
314 Chapter 9 Statistical Physics

the Fermi-Dirac and Bose-Einstein distributions reduce to the classical Maxwell-
Boltzmann distribution when Bi exp(bE ) is much greater than 1* (in that case the 
normalization constant A ! 1/Bi). This means that the Maxwell-Boltzmann factor 
A exp(%bE ) is much less than 1 (that is, the probability that a particular energy 
state will be occupied is much less than 1). This is consistent with our earlier use 
of Maxwell-Boltzmann statistics for a dilute, noninteracting system of particles. See 
Table 9.2 for a summary of the properties of the three distribution functions.

A comparison of the three distribution functions is shown in Figure 9.8, with 
each one graphed as a function of energy. The normalization constants for the 
distributions (A for the Maxwell-Boltzmann, BFD for the Fermi-Dirac, and BBE for 
the Bose-Einstein) depend on the physical system being considered. For conve-
nience, we set them all equal to 1 for this comparison. Notice that the Bose-
Einstein factor FBE is higher than the Fermi-Dirac factor FFD at any given energy. 
Mathematically, this is due to the difference between #1 and %1 in the denomi-
nators of the two functions. Physically, the higher value of FBE results from the 
fact that bosons do not obey the Pauli exclusion principle, so more bosons are 
allowed to fill lower energy states. Another thing to notice in Figure 9.8 is that 
the three graphs coincide at high energies—the classical limit. That is why 
Maxwell-Boltzmann statistics may be used in the classical limit, regardless of 
whether the particles in the system are fermions or bosons.

Austrian physicist Ludwig 
Boltzmann (1844– 1906) worked 
inde pen dently of Maxwell on de-
veloping the laws governing the 
statistical behavior of classical par-
ticles. Boltzmann is remembered 
most for his work on the statisti-
cal nature of entropy, and he sup-
ported the notion that the equipar-
tition theorem is a fundamental 
part of statistical physics and ther-
modynamics. On Boltzmann’s Vi-
enna tombstone is carved his fa-
mous formula for entropy: S ! k 
log W, where W is the number of 
possible ways a state can be 
configured and k is the constant 
that was named in Boltzmann’s 
honor.
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*This happens at high temperatures and low densities. A good rule of thumb is to compare the in-
terparticle spacing with the average de Broglie wavelength. If the interparticle spacing is much 
greater than the de Broglie wavelength, then Maxwell-Boltzmann statistics are fairly accurate. Oth-
erwise one should use the quantum statistics.
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Figure 9.8 A comparison of the three distribu-
tion functions, each drawn as a function of energy 
over the same range. The normalization constants 
A, BFD, and BBE have been set equal to 1 for conve-
nience. The Bose-Einstein distribution is higher 
than the Fermi-Dirac distribution, because bosons 
do not obey the Pauli principle. At high energies, 
the three distributions are close enough so that 
the classical Maxwell-Boltzmann distribution can 
be used to replace either quantum distribution.

 Properties of the   Distribution 
Distributors Distribution Examples Function

Maxwell- Particles are  Ideal gases FMB ! A exp 1%bE 2
Boltzmann identical but 
 distinguishable

Bose-Einstein Particles are  Liquid 4He,  FBE !
1

B BE exp 1bE 2 % 1 identical and  photons
 indistinguishable 
 with integer spin

Fermi-Dirac Particles are identical  Electron gas  FFD !
1

B FD exp 1bE 2 # 1 and indistinguishable  (free electrons 
 with half-integer spin in a conductor)

Tab le  9 .2    Classical and Quantum Distributions
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