Ideal Gas Law

PHY 215
Thermodynamics and
Modern Physics

Fall 2025 MSU

Outline: The Ideal Gas Law

- Systems of interest: Gases
- Ideal Gas Laws
- Kinetic Theory of Gases
- Equipartition
- Molar Specific Heat of Gases

Systems of Interest

Boyle's Law

pV=const, at fixed T and n

Image: http://en.wikipedia.org

Charles's Law

Image: http://en.wikipedia.org

Combined

THE IDEAL GAS LAW

where n is the <u>number of moles</u> of gas and R is the <u>gas constant</u>, $R = 8.31 \text{ J/(mol} \cdot \text{K)}$

One mole of an ideal gas at standard temperature (0 °C) and pressure (1 atm) ("STP") occupies approx. 22.4 liters.

$$[p] = 1 \text{ Pa} = 1 \text{ N/m}^2$$

 $[V] = 1 \text{ m}^3 = 10^6 \text{ l}$
 $[T] = \text{° K}$
 $[n] = \text{moles}$

Molecular Version of Ideal Gas Law

Alternate form:

PV = NkT

where N is the <u>number of molecules</u> in the gas and k is the Boltzmann's constant,

 $k = 1.38 \times 10^{-23} J/K$

N_A=Avagadro's Number =6.022 x 10²³

(Comparing the two forms gives $R=N_Ak$.)

Kinetic Theory of Gases

Consider N molecules (n moles with $n=N/N_A$) in a cubical box of side L, i.e. Volume = L^3 .

Change in momentum at the x-wall is

$$\Delta p_x = 2 \text{ m } v_x$$

Time between collisions with the x-wall is

$$\Delta t = 2 L / v_x$$

Origin of Pressure

Average rate of change of momentum in x-direction:

$$\Delta p_x/\Delta t = (2mv_x)/(2L/v_x) = m v_x^2/L$$

This is force exerted by the molecule.

Total Force =
$$\sum_{i=1}^{N} (m v_x^2)_i / L$$

Pressure P = Force/Area =
$$F/L^2$$

= $(m/L^3) \sum (v_x^2)_i$

$$\Rightarrow$$
 P = (m/L³) N $< v_x^2 >$

– average

mN = nM is the total mass.

$$P = (nM/V) < v_x^2 >$$

Relation to Gas Law

For any molecule: $v^2 = v_x^2 + v_y^2 + v_z^2$

$$\Rightarrow$$
 < v_x^2 = (1/3) < v^2 >

$$\Rightarrow$$
 P = (nM/3V) $<$ v² $>$

Define root-mean-square speed v_{rms} :

$$v_{rms} = \sqrt{\langle v^2 \rangle}$$

$$\Rightarrow$$
 PV = (nM/3) v_{rms}^2

From ideal gas law: PV = nRT

$$\Rightarrow$$
 (nM/3) $v_{rms}^2 = nRT$

$$v_{rms} = \sqrt{3RT/M}$$

Internal Kinetic Energy

Average (translational) kinetic energy per molecule

$$= (1/2) m < v^2 > = (1/2) m (3RT/M)$$

Using $M/m = N_A$,

$$< K > = 3RT/(2N_A) = (3/2) k T$$

Temperature is a measure of the average kinetic energy of gas molecules!

Maxwell Distribution

P(v) dv is the probability that a molecule has speed between v and v + dv.

Internal Energy: U

Monatomic gas - Single atoms:

$$U = N (3/2) kT = (3/2) nN_A kT = (3/2) nRT$$

Each atom has 3 <u>Degrees of Freedom.</u> (K. E. in x, y, or z directions).

Diatomic molecule:

 Rotates (in two planes)
 ⇒ 5 degrees of freedom.

$$U = (5/2) nRT$$

$$U = (6/2) nRT = 3 nRT$$

Vibrational degrees of freedom!

Ideal Gas: U is a Function of T only!

Molar Specific Heat

at constant volume

Equipartition

General Case: $C_V=(\# degrees of freedom/2)R$

E=(# degrees of freedom)(kT/2)

Diatomic Molecule

Quantum Mechanics:

Energy Levels Quantized.

Different modes "turn on" at different temperature.

Summary

- Equation of state for a gas: the ideal gas law.
- Kinetic Theory of Gases: pressure and temperature are manifestations of the kinetic motion of gas molecules.
- Maxwell velocity distribution
- Internal energy of a gas: translational, rotational, and vibrational.
- (Molar) specific heat (C_V) : (1/2)R per "active" degree of freedom (dof).
- Internal Energy U: (1/2) nRT per dof.