Thermodynamics

PHY 215
Thermodynamics and
Modern Physics

Fall 2025 MSU

Outline

- Clausius's Theorem
- Entropy: a new state function
 - Entropy of an Ideal Gas
- Entropy change in reversible and irreversible processes
 - Carnot Cycle
 - Free Expansion
- Entropy form of 2nd law

Concept Test

Air conditioners are placed in windows because:

- A. It is necessary to have air flowing from the room to the outside while the machine is on.
- B. At least two heat reservoirs are needed for a heat engine to work.

C. Their size makes it inconvenient to put them

entirely in the house.

Clausius's Theorem I

"2-Step" Heat Engine

$$\eta = \frac{W}{Q_H} = \frac{Q_H - Q_C}{Q_H} \le \eta_{Carnot} = 1 - \frac{T_C}{T_H}$$
$$\frac{Q_H}{T_H} + \frac{-Q_C}{T_C} \le 0$$

$$\sum_{i=1,2} rac{\Delta Q_i}{T_i} \leq 0$$
 , $\Delta \mathbf{Q_i}$ = "absorbed" heat

"N-Step" Heat Engine:

Compare to "N" Carnot Engines: "Kelvin" 2nd law ⇒

$$\sum_{i=1}^{N} \frac{\Delta Q_i}{T_i} \le 0$$

$$7 = 1 - \frac{Q_c}{Q_H} \le \frac{1}{T_{carnot}} = 1 - \frac{T_c}{T_H}$$

$$\Rightarrow \frac{Q_c}{Q_H} > \frac{T_c}{T_H}$$

$$\Rightarrow \frac{Q_u}{T_H} - \frac{Q_c}{T_c} = \frac{Q_u}{T_u} + \frac{(-Q_c)}{T_c}$$

$$\Rightarrow 0 > \frac{Q_u}{T_H} - \frac{Q_c}{T_c} = \frac{Q_u}{T_u} + \frac{(-Q_c)}{T_c}$$

$$\Rightarrow 0 > \frac{Q_u}{T_h} - \frac{Q_c}{T_c} = \frac{Q_u}{T_u} + \frac{(-Q_c)}{T_c}$$

$$\Rightarrow 0 > \frac{Q_u}{T_h} - \frac{Q_c}{T_c} = \frac{Q_u}{T_u} + \frac{(-Q_c)}{T_c}$$

$$\Rightarrow 0 > \frac{Q_u}{T_h} - \frac{Q_c}{T_c} = \frac{Q_u}{T_u} + \frac{(-Q_c)}{T_c}$$

$$\Rightarrow 0 > \frac{Q_u}{T_h} - \frac{Q_c}{T_c} = \frac{Q_u}{T_u} + \frac{(-Q_c)}{T_c}$$

$$\Rightarrow 0 > \frac{Q_u}{T_h} - \frac{Q_c}{T_c} = \frac{Q_u}{T_u} + \frac{(-Q_c)}{T_c}$$

$$\Rightarrow 0 > \frac{Q_u}{T_h} - \frac{Q_c}{T_c} = \frac{Q_u}{T_u} + \frac{(-Q_c)}{T_c}$$

$$\Rightarrow 0 > \frac{Q_u}{T_h} - \frac{Q_c}{T_c} = \frac{Q_u}{T_u} + \frac{(-Q_c)}{T_c}$$

$$\Rightarrow 0 > \frac{Q_u}{T_h} - \frac{Q_c}{T_c} = \frac{Q_u}{T_h} + \frac{(-Q_c)}{T_c}$$

$$\Rightarrow 0 > \frac{Q_u}{T_h} - \frac{Q_c}{T_c} = \frac{Q_u}{T_h} + \frac{(-Q_c)}{T_c}$$

$$\Rightarrow 0 > \frac{Q_u}{T_h} - \frac{Q_c}{T_c} = \frac{Q_u}{T_h} + \frac{(-Q_c)}{T_c}$$

$$\Rightarrow 0 > \frac{Q_u}{T_h} - \frac{Q_c}{T_c} = \frac{Q_u}{T_h} + \frac{(-Q_c)}{T_c}$$

$$\Rightarrow 0 > \frac{Q_u}{T_h} - \frac{Q_c}{T_c} = \frac{Q_u}{T_h} + \frac{(-Q_c)}{T_c}$$

$$\Rightarrow 0 > \frac{Q_u}{T_h} - \frac{Q_c}{T_c} = \frac{Q_u}{T_h} + \frac{(-Q_c)}{T_c}$$

Clausius's Theorem II

Statement of Theorem:

 For any N-step, cyclic, thermodynamic cycle, with reversible or irreversible steps:

$$\left| \sum_{i=1}^{N} \frac{\Delta Q_i}{T_i} \le 0 \right|$$

- ΔQ_i heat "absorbed" in i^{th} step
- T_i temperature of ith reservoir
- Equality holds only if all steps reversible!

Follows, logically, from 2nd law of thermodynamics.

Rudolf Clausius 1822-1888 "N-Step" Heat Engine:

Clausius's Theorem III

A continuous cycle is an "∞-Step" process!

$$\sum_{i=1}^{N} \frac{\Delta Q_i}{T_i} \to \oint \frac{dQ}{T} \le 0$$

V

For a reversible cycle:

Rudolf Clausius 1822-1888

Image: http://en.wikipedia.org

Clausius Consequences: All Cycles

$$\oint \frac{dQ}{T} \le 0$$

⇒ dQ_{rev} must have both <u>positive</u>
and <u>negative</u> contributions!

The system must both <u>absorb</u> heat from and <u>reject heat</u> to the environment!

Kelvin form of 2nd law.

Recall: "State Functions"

- "State Functions" depend only on the parameters which define an equilibrium state, e.g. p, V, T, n, ...
- Example: U(n,T)=(3/2)nRT, monoatomic gas

$$\int_{i}^{f} dU = U_f - U_i \quad \& \quad \oint dU = 0$$

 W and Q are not state functions: depend on process which produced state.

$$\oint dW, dQ \neq 0$$

Entropy

For a reversible cycle:

$$\oint \frac{dQ_{rev}}{T} = 0$$

Rudolf Clausius 1822-1888

Define a new state function: Entropy, S

$$dS = \frac{dQ_{rev}}{T}$$

$$S_f - S_i = \int_i^f rac{dQ_{rev}}{T}$$

Entropy is a "thermodynamic potential": defined up to a constant!

Image: http://en.wikipedia.org

Ideal Gas Entropy I

$$\frac{dQ_{rev}}{dQ_{rev}} = dU + dW = nC_V dT + pdV$$

$$= nC_V dT + nRT \frac{dV}{V}$$

$$\frac{dQ_{rev}}{T} = nC_V \frac{dT}{T} + nR \frac{dV}{V}$$

$$= nC_V d \log T + nR d \log V$$

$$S_f - S_i = \int_i^f \frac{dQ_{rev}}{T}$$

$$= nC_V \log \left(\frac{T_f}{T_i}\right) + nR \log \left(\frac{V_f}{V_i}\right)$$

Ideal Gas Entropy II

$$S_f - S_i = nC_V \log\left(\frac{T_f}{T_i}\right) + nR\log\left(\frac{V_f}{V_i}\right)$$

NB: Depends only on initial and final states!

Hence: any path can be used to define $\Delta S!$

Makes sense: S(T,V) a state function \checkmark

The Carnot Engine

 $1\rightarrow 2 \& 3\rightarrow 4$ isothermal

 $2 \rightarrow 3 \& 4 \rightarrow I$ adiabatic

- It is reversible: no friction or other dissipative forces.
- Heat conduction only occurs isothermally at the temperatures of the two reservoirs.

NB: idealized and impractical!

Carnot Cycle

	ΔQ	ΔU	ΔW
1→2	$nRT_H\lograc{V_2}{V_1}$	0	$nRT_H \log \frac{V_2}{V_1}$
2→3	0	nC _V ΔT	-nC _√ ΔT
3→4	$nRT_{\mathbf{C}} \log rac{V_4}{V_3}$	0	$nRT_{\mathcal{C}} \log rac{V_4}{V_3}$
4→1	0	-nC _V ∆T	nC _V ΔT
total	?	0	?

Work done during isothermal expansion

$$W = \int_{V_1}^{V_2} (nRT) \frac{dV}{V} = (nRT) \log \left(\frac{V_1}{V_2}\right)$$

Change in internal energy of an ideal gas

$$\Delta U = nC_V \Delta T$$

Carnot Cycle $\Delta S = \frac{\Delta Q}{T}$ DQ T DS $1-02 \quad \text{inRTH ln}(\frac{V_2}{V_1}) \quad T_H \quad \text{inRln}(\frac{V_1}{V_1})$ $2-03 \quad 0 \quad 0$ $3 \rightarrow 4 \left| \frac{V_4}{RT_c \ln \left(\frac{V_4}{V_3} \right)} \right| \frac{1}{R} \frac{1}{R} \frac{1}{R} \left(\frac{V_2}{V_3} \right) = -nR \ln \left(\frac{V_2}{V_3} \right)$ To $\left(\text{for } \frac{V_{4}}{V_{3}} = \frac{V_{1}}{V_{2}}\right)$ 4-01 Total

(ΔS) = 0 for a reversible, cyclic TD process. total Entropy S is a "state function".

Entropy Change: Isothermal Expansion

Isothermal Expansion: $T_f = T_i$, $V_f > V_i$

The amount of heat which leaves the reservoir and enters the gas is

$$Q = n R T ln(V_f/V_i)$$
.

The entropy change of the gas is

$$\Delta S_{gas}$$
 = + Q/T = n R In(V_f/V_i).

$$\Delta S_{\text{reservoir}} = - Q/T.$$

The net entropy change is

$$\Delta S_{\text{universe}} = \Delta S_{\text{gas}} + \Delta S_{\text{reservoir}} = 0.$$

T constant

In a reversible process, the entropy change of the universe (system + surroundings) is zero.

Entropy Change: Adiabatic Free Expansion

NB: Beginning and ending states of system are the same as isothermal expansion!

$$\Delta S_{gas} = + Q/T = n R ln(V_f/V_i).$$

Entropy Increases!

- BUT: no heat transfer from environment!
 - $\Delta S_{reservoir} = 0$
 - $\Delta S_{universe} = \Delta S_{gas} + \Delta S_{reservoir} > 0!$
- Irreversible Processes: Entropy increases.
- NB: In an irreversible process

$$S_f - S_i \neq \int_i^f \frac{dQ}{T}$$

No path in state "space"

2nd Law: Entropy Form

- The entropy of the universe, or any isolated, system satisfies $\Delta S_{universe} \geq 0$.
- The equal sign only applies to reversible processes.
- Entropy increases, but does not decrease
 ⇒ "The Arrow of Time"

Sir Arthur Eddington 1882-1944

Image: http://en.wikipedia.org

Entropy: Interpretation

Entropy ~ a measure of the disorder of a system.

A state of high order = low probability
A state of low order = high probability

In an irreversible process, the universe moves from a state of low probability to a state of higher probability.

More in next lecture...

Summary

• Clausius Theorem $\left|\sum_{i=1}^{N} \frac{\Delta Q_i}{T_i} \le 0\right|$

$$\sum_{i=1}^{N} \frac{\Delta Q_i}{T_i} \le 0$$

• Reversible Processes $\oint \frac{dQ_{rev}}{T} = 0$

$$\oint \frac{dQ_{rev}}{T} = 0$$

• Entropy
$$S_f - S_i = \int_i^f \frac{dQ_{rev}}{T}$$

Ideal Gas Entropy

$$S_f - S_i = nC_V \log\left(\frac{T_f}{T_i}\right) + nR\log\left(\frac{V_f}{V_i}\right)$$

• 2^{nd} Law: $\Delta S_{universe} \ge 0$