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1 Derivation of the Schrödinger Equa-
tion

The Schrödinger equation emerges from unifying wave-particle dual-

ity with classical physics principles. Here’s the structured argument:

1. Physical Motivation: Wave-Particle Duality

- de Broglie Hypothesis : Particles exhibit wave-like behavior with

wavelength:

λ =
h

p
,

where p is momentum.

- Wave Function (ψ) : Describes quantum states, with |ψ(x, t)|2
as the probability density.

- Probability Conservation : Governed by the continuity equation:

∂

∂t
|ψ|2 +∇ · J⃗ = 0,

where J⃗ = ℏ
2mi (ψ

∗∇ψ − ψ∇ψ∗).

2. Classical Wave Equation Analogy

- Plane Wave Ansatz : Assume a monochromatic solution:

ψ(x, t) = ei(kx−ωt),

with k = 2π
λ and ω = 2πf .

- Energy-Momentum Relation : Substitute E = ℏω and p = ℏk.
Hence,

ψ(x, t) = e
i
ℏ(px−Et).
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3. Postulating the Time-Dependent Schrödinger Equa-

tion

- Operator Correspondence :

E → iℏ
∂

∂t
, p⃗→ −iℏ∇.

In terms of components, p⃗ = (px, py, pz) with

px → −iℏ ∂
∂x
.

- Hamiltonian Formulation :

iℏ
∂

∂t
ψ(x, t) =

[
− ℏ2

2m
∇2 + V (x)

]
ψ(x, t).

4. Justifying the Equation

- Consistency with de Broglie Waves :

ℏωψ =

(
ℏ2k2

2m
+ V

)
ψ =⇒ E =

p2

2m
+ V.

- Probability Conservation : Recovers the continuity equation.

5. Stationary States and Time-Independent Equation

- Separation of Variables : Assume ψ(x, t) = ψ(x)e−iEt/ℏ:[
− ℏ2

2m
∇2 + V (x)

]
ψ(x) = Eψ(x).

6. Experimental Validation
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- Hydrogen Atom : Predicts quantized energy levels matching the

Balmer series.

- Tunneling Effect : Explains alpha decay and scanning tunneling

microscopy.

- Wave Packet Dynamics : Describes spreading consistent with

the uncertainty principle.

7. Limitations and Extensions

- Non-Relativistic : Fails at v ∼ c (requires Dirac equation).

- Multi-Particle Systems : Generalizes to ψ(x1, x2, . . . , xN , t).

- Probabilistic Interpretation : Born rule (|ψ|2) is a postulate.

8. Conclusion

The Schrödinger equation arises from:

1. Postulating wave-particle duality and probability interpretation.

2. Promoting classical observables to quantum operators.

3. Demanding consistency with energy-momentum relations.

4. Agreement with experimental results in quantum systems.

It serves as the foundational equation of non-relativistic quantum

mechanics, unifying particle behavior with wave dynamics.
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2 Solve the Schrödinger equation for
the deuteron

2.1 Reduction to the effective one-body prob-
lem

• The deuteron is a two-body system consisting of a proton and

a neutron. We first reduce it to an effective one-body problem

by introducing the reduced mass. The reduced mass µ of the

system is given by µ =
mpmn

mp+mn
, where mp is the mass of the

proton and mn is the mass of the neutron.

• The Schrödinger equation for a central potential V (r) in spher-

ical coordinates is

−ℏ2

2µ
∇2ψ + V (r)ψ = Eψ

• In spherical coordinates,

∇2 =
1

r2
∂

∂r
(r2

∂

∂r
) +

1

r2 sin θ

∂

∂θ
(sin θ

∂

∂θ
) +

1

r2 sin2 θ

∂2

∂φ2

• For a spherically symmetric potential V = V (r), the wave

function can be written as ψ(r, θ, φ) = R(r)Ylm(θ, φ), where

Ylm(θ, φ) are the spherical harmonics and R(r) is the radial
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part of the wave function. The Schrödinger equation then re-

duces to the radial equation:

−ℏ2

2µ

[
1

r2
d

dr
(r2
dR

dr
)− l(l + 1)

r2
R

]
+ V (r)R = ER

2.2 Choice of potential model

• A common choice is the square-well potential as a simple ap-

proximation. The square-well potential is given by

V (r) =

{
−V0, r < a

0, r ≥ a

• Inside the well (r < a), the radial Schrödinger equation be-

comes

−ℏ2

2µ

1

r2
d

dr
(r2
dR

dr
) +

ℏ2l(l + 1)

2µr2
R− V0R = ER

• Let u(r) = rR(r), then the equation simplifies to

−ℏ2

2µ

d2u

dr2
+

[
ℏ2l(l + 1)

2µr2
− V0

]
u = Eu

• The general solution for l = 0 (the ground state is usually

l = 0 for the deuteron) inside the well is u(r) = A sin(kr) +

B cos(kr), where k =
√

2µ(V0+E)
ℏ2 .
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• Outside the well (r ≥ a), the equation is

−ℏ2

2µ

d2u

dr2
+

ℏ2l(l + 1)

2µr2
u = Eu

• For l = 0, appropriate for the deuteron ground state, the gen-

eral solution is u(r) = Ce−κr + Deκr, where κ =
√
−2µE

ℏ2 .

Since the wave function must be finite as r → ∞, we set

D = 0.

2.3 Applying boundary conditions

• We need to apply the boundary conditions at r = a. The wave

function and its derivative must be continuous at r = a.

• Continuity of the wave function: A sin(ka) + B cos(ka) =

Ce−κa.

• Continuity of the derivative: k[A cos(ka)−B sin(ka)] = −κCe−κa.

• By solving these equations simultaneously, we can find the en-

ergy eigenvalues E and the constants A, B, and C.

• Eliminating A, B, and C between these two equations, we

obtain the transcendental equation for the eigenvalues:

k cot(ka) = −κ.
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Substituting k =
√

2µ(V0+E)
ℏ2 and κ =

√
−2µE

ℏ2 into the above

equation, we can solve for E numerically to find the bound-state

eigenvalues of the square-well potential for the deuteron-like system.

For the deuteron, the experimental data show that there is only

one bound state with a binding energy Eb = 2.225MeV. According

to the model, the bound-state energy E = −Eb. When a ≈ 1.4 fm,

the above calculation yields V0 ≈ 35MeV.

Another more realistic potential model is the Yukawa potential

V (r) = −V0 e
− r
a

r , which is more in line with the nature of the nuclear

force. Solving the Schrödinger equation with the Yukawa potential is

more complicated and usually requires numerical methods or approx-

imation techniques such as the variational method or perturbation

theory.

2.4 The role of Reduced Mass

The reduced mass accounts for the relative motion of two interact-

ing particles. It effectively transforms the two-body problem into a

single-particle problem with mass µ, simplifying the solution of the

Schrödinger equation. In the deuteron:

• The proton and neutron orbit their common center of mass.

• The reduced mass captures the combined inertia of both par-

ticles, reflecting how each particle ”feels” the other’s motion.
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• It plays a critical role in determining the relationship between

the potential depth V0 and the observed binding energy Eb.

The reduced mass µ in a two-body system (e.g., proton-neutron

in the deuteron) is defined as:

µ =
mpmn

mp +mn

wheremp ≈ 938.27MeV/c2 (proton mass) andmn ≈ 939.57MeV/c2

(neutron mass). For the deuteron, since mp ≈ mn, we approximate

µ ≈ mp

2 ≈ 469MeV/c2.
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3 Shell, Subshell and Orbitals

In atomic physics, the number of electrons that can fill each orbital

is determined by the Pauli exclusion principle, which states that no

two electrons in an atom can have the same set of quantum numbers.

Each orbital is defined by the quantum numbers n, l, and ml, and

can hold a maximum of 2 electrons with opposite spins (governed by

the spin quantum number ms = +1
2 or −

1
2).

– Key Steps to Determine Orbitals and Electrons for n = 3

(1) Principal Quantum Number (n)

Defines the electron shell. For n = 3, the possible values of the

angular momentum quantum number (l) are 0, 1, 2 (corresponding

to s, p, d subshells).

(2) Orbitals per Subshell (l)

- For l = 0 (s subshell): Magnetic quantum number ml = 0 → 1

orbital.

- For l = 1 (p subshell): ml = −1, 0,+1 → 3 orbitals.

- For l = 2 (d subshell): ml = −2,−1, 0,+1,+2 → 5 orbitals.

Total orbitals for n = 3: 1 + 3 + 5 = 9 orbitals.

(3) Electrons per Orbital

Each orbital can hold 2 electrons (spin - up and spin - down). Total

electrons for n = 3: 9 orbitals× 2 electrons/orbital = 18 electrons.

(4) Common Confusion: Orbitals vs. Electrons

- Orbitals: Defined by n, l, ml. For n = 3, there are 9 orbitals (not

18).
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- Electrons: Each orbital holds 2 electrons (due to spin), so the n = 3

shell can hold 18 electrons in total.

(5) Summary

- Each orbital: 2 electrons (spin - paired).

- For n = 3:

- 9 orbitals (1 s, 3 p, 5 d).

- 18 electrons in total (9 orbitals × 2 electrons/orbital).

This follows directly from the quantum numbers and the Pauli

exclusion principle, which limits each orbital to two electrons with

opposite spins.
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4 Average and Probable Radii of the
Hydrogen Atom

Key Quantities for Hydrogenic Orbitals

For a hydrogenic atom (nuclear charge Z), the characteristic length

scale is the Bohr radius:

a0 =
4πε0ℏ2

mee2
≈ 5.29177210903× 10−11 m.

We consider three common measures of the ”size” of an orbital

|n, l,ml⟩:

1. Most probable radius rmp

2. Expectation value of radius ⟨r⟩

3. Root-mean-square radius rrms =
√
⟨r2⟩

(1) Most Probable Radius

The most probable radius is the value of r that maximizes the radial

probability density P (r) = r2|Rnl(r)|2. That is to require dP (r)
dr = 0,

at r = rmp.

For hydrogenic atoms,

rmp =
n2a0
Z

.
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For hydrogen (Z = 1):

rmp = n2a0.

(2) Expectation Value of the Radius

The mean (expectation) value of r is

⟨r⟩n,l =
a0
2Z

[
3n2 − l(l + 1)

]
.

For hydrogen (Z = 1):

Orbital ⟨r⟩/a0 ⟨r⟩ (Å)
1s 1.5 0.794

2s 6.0 3.175

2p 5.0 2.646

3s 13.5 7.144

3p 12.5 6.615

3d 10.5 5.556

(3) Root-Mean-Square (RMS) Radius

The expectation value of r2 is

⟨r2⟩n,l =
n2a20
2Z2

[
5n2 + 1− 3l(l + 1)

]
.
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Thus, the RMS radius is

rrms = a0
n√
2Z

√
5n2 + 1− 3l(l + 1) .

For hydrogen (Z = 1):

Orbital rrms/a0 rrms (Å)

1s 1.225 0.648

2s 7.07 3.74

2p 6.24 3.30

3s 17.3 9.16

3p 16.5 8.73

3d 14.7 7.78

(4) Scaling Behavior

All three characteristic radii of an orbital |n, l,ml⟩ are independent
of ml and scale approximately as

r ∝ n2a0
Z

.

Specifically,

rmp =
n2a0
Z

, ⟨r⟩ ≈ 1.5n2a0
Z

, rrms ≈
1.2n2a0
Z

.

Namely, rmp < rrms < ⟨r⟩.
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