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1 Derivation of the Schrodinger Equa-
tion

The Schrodinger equation emerges from unifying wave-particle dual-
ity with classical physics principles. Here’s the structured argument:
1. Physical Motivation: Wave-Particle Duality
- de Broglie Hypothesis : Particles exhibit wave-like behavior with
wavelength:

h
>\:_7
p

where p is momentum.

- Wave Function (1) : Describes quantum states, with [(z,t)[?
as the probability density.

- Probability Conservation : Governed by the continuity equation:

0. -
EM +V.-J=0,

where J = Z—ZN (V*Vp — YV h*).
2. Classical Wave Equation Analogy
- Plane Wave Ansatz : Assume a monochromatic solution:

w(ﬂﬁ, t) _ ez'(k‘x—wt)7

with £ = 2{ and w =2mf.
- Energy-Momentum Relation : Substitute £/ = hw and p = hk.

Hence, |
b, ) = kT,
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3. Postulating the Time-Dependent Schrodinger Equa-
tion
- Operator Correspondence :
E — 'ha ) — —1hV
1h—, —ihV.
or P
In terms of components, p’'= (p,, py, p.) with

0
r — —th—.
b " or
- Hamiltonian Formulation :
0 h?
h—(z,t) = | ——V*+V t).
(o) = | =4 V(o) ot
4. Justifying the Equation
- Consistency with de Broglie Waves :
h2k2 2
hwp = (——+V )y — E=2 1V
2m 2m
- Probability Conservation : Recovers the continuity equation.
5. Stationary States and Time-Independent Equation
- Separation of Variables : Assume (z,t) = tb(x)e " Ft/M;
h2
-V V@) vlo) = Bvlo).

2m

6. Experimental Validation
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- Hydrogen Atom : Predicts quantized energy levels matching the
Balmer series.

- Tunneling Effect : Explains alpha decay and scanning tunneling
MICTOSCOPY.

- Wave Packet Dynamics : Describes spreading consistent with
the uncertainty principle.

7. Limitations and Extensions

- Non-Relativistic : Fails at v ~ ¢ (requires Dirac equation).

- Multi-Particle Systems : Generalizes to ©¥(x1, xa, ..., TN, ).

- Probabilistic Interpretation : Born rule (|1)|?) is a postulate.

8. Conclusion

The Schrodinger equation arises from:
1. Postulating wave-particle duality and probability interpretation.
2. Promoting classical observables to quantum operators.
3. Demanding consistency with energy-momentum relations.
4. Agreement with experimental results in quantum systems.

It serves as the foundational equation of non-relativistic quantum
mechanics, unifying particle behavior with wave dynamics.



2.1

Solve the Schrodinger equation for
the deuteron

Reduction to the effective one-body prob-
lem

The deuteron is a two-body system consisting of a proton and

a neutron. We first reduce it to an effective one-body problem

by introducing the reduced mass. The reduced mass p of the

system is given by p = —2™ where m,, is the mass of the
mp+my’ P

proton and m,, is the mass of the neutron.

The Schrédinger equation for a central potential V () in spher-
ical coordinates is

h2v2 1% —F
_ﬂ Y+ V(rhy = Ey

In spherical coordinates,

, 10, ,0 1 0, 0 1 0
_ H—
v (sinf55) + r2 sin? § 02

_ﬁﬁr(r 8r)+fr2sin909 00

For a spherically symmetric potential V' = V(r), the wave
function can be written as ¥(r, 0, ¢) = R(r)Yi,(0, ¢), where
Yim (0, p) are the spherical harmonics and R(r) is the radial



2.2

part of the wave function. The Schrodinger equation then re-
duces to the radial equation:

_h_2 ii(TQdR) B [(1+1)
2 | r2dr  dr r2

}4+VMR—ER

Choice of potential model

A common choice is the square-well potential as a simple ap-
proximation. The square-well potential is given by

—W <
'wm{ 0 =a
0, r>a

Inside the well (r < a), the radial Schrodinger equation be-
comes

1 d AR R

- o7 ViR = ER

Let u(r) = rR(r), then the equation simplifies to

B h? d*u N R+ 1)
21 dr?

o —V()] u= Fu

The general solution for [ = 0 (the ground state is usually
[ = 0 for the deuteron) inside the well is u(r) = Asin(kr) +

B cos(kr), where k = w
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2.3

Outside the well (r > a), the equation is

B h* d*u N R+ 1)
241 dr? 24112

u= Fu

For [ = 0, appropriate for the deuteron ground state, the gen-

eral solution is u(r) = Ce™" + De"" where k = \/—2;‘;—2E.

Since the wave function must be finite as r — 00, we set
D =0.
Applying boundary conditions

We need to apply the boundary conditions at r = a. The wave
function and its derivative must be continuous at r = a.

Continuity of the wave function: Asin(ka) + Bcos(ka) =
Ce he,

Continuity of the derivative: k|A cos(ka)—Bsin(ka)] = —xkCe™",

By solving these equations simultaneously, we can find the en-
ergy eigenvalues E and the constants A, B, and C.

Eliminating A, B, and C between these two equations, we
obtain the transcendental equation for the eigenvalues:

k cot(ka) = —k.



Substituting k£ = W and Kk = \/—Zg—QE into the above

equation, we can solve for E numerically to find the bound-state
eigenvalues of the square-well potential for the deuteron-like system.

For the deuteron, the experimental data show that there is only
one bound state with a binding energy Ej = 2.225 MeV. According
to the model, the bound-state energy £ = —FEj,. When a ~ 1.4fm,
the above calculation yields V) ~ 35 MeV.

Another more realistic potential model is the Yukawa potential
V(r) = =V, which is more in line with the nature of the nuclear
force. Solving the Schrodinger equation with the Yukawa potential is
more complicated and usually requires numerical methods or approx-
imation techniques such as the variational method or perturbation
theory.

2.4 The role of Reduced Mass

The reduced mass accounts for the relative motion of two interact-
ing particles. It effectively transforms the two-body problem into a
single-particle problem with mass g, simplifying the solution of the
Schrodinger equation. In the deuteron:

e The proton and neutron orbit their common center of mass.

e The reduced mass captures the combined inertia of both par-
ticles, reflecting how each particle "feels” the other’s motion.



e [t plays a critical role in determining the relationship between
the potential depth V;; and the observed binding energy FEj.

The reduced mass p in a two-body system (e.g., proton-neutron
in the deuteron) is defined as:

myMmy,

M_mp—l—mn

where m,, & 938.27 MeV /c? (proton mass) and m,, & 939.57 MeV /¢?
(neutron mass). For the deuteron, since m, & my,, we approximate
p LA 469 MeV /2.



3 Shell, Subshell and Orbitals

In atomic physics, the number of electrons that can fill each orbital
is determined by the Pauli exclusion principle, which states that no
two electrons in an atom can have the same set of quantum numbers.
Each orbital is defined by the quantum numbers n, [, and m;, and
can hold a maximum of 2 electrons with opposite spins (governed by
the spin quantum number mg, = —i—% or —%)
— Key Steps to Determine Orbitals and Electrons for n = 3
(1) Principal Quantum Number (n)
Defines the electron shell. For n = 3, the possible values of the
angular momentum quantum number (I) are 0, 1,2 (corresponding
to s, p, d subshells).
(2) Orbitals per Subshell (1)
- For [ = 0 (s subshell): Magnetic quantum number m; = 0 — 1
orbital.
- For [ =1 (p subshell): m; = —1,0,+1 — 3 orbitals.
- For [ = 2 (d subshell): m; = —2,—1,0,+1,42 — 5 orbitals.
Total orbitals for n = 3: 1+ 3+ 5 =9 orbitals.
(3) Electrons per Orbital
Each orbital can hold 2 electrons (spin - up and spin - down). Total
electrons for n = 3: 9 orbitals x 2 electrons/orbital = 18 electrons.
(4) Common Confusion: Orbitals vs. Electrons
- Orbitals: Defined by n, [, m;. For n = 3, there are 9 orbitals (not
18).



- Electrons: Each orbital holds 2 electrons (due to spin), so the n = 3
shell can hold 18 electrons in total.

(5) Summary
- Each orbital: 2 electrons (spin - paired).
- Forn = 3:
- 9 orbitals (18,3 p, 5 d).
- 18 electrons in total (9 orbitals x 2 electrons/orbital).

This follows directly from the quantum numbers and the Pauli
exclusion principle, which limits each orbital to two electrons with
opposite spins.
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4 Average and Probable Radii of the
Hydrogen Atom

Key Quantities for Hydrogenic Orbitals

For a hydrogenic atom (nuclear charge Z), the characteristic length
scale is the Bohr radius:

o 47T€0h2

ag = ~ 5.29177210903 x 10~ m.

M€

We consider three common measures of the "size” of an orbital
‘n7 l) ml>:

1. Most probable radius ry,;,

2. Expectation value of radius (r)

3. Root-mean-square radius ryy,s = +/(r?)

(1) Most Probable Radius

The most probable radius is the value of r that maximizes the radial
probability density P(r) = r*|R,(r)|>. That is to require d};—ff) =0,
at r = Typ.

For hydrogenic atoms,




For hydrogen (Z = 1):

Fp = N200.

(2) Expectation Value of the Radius

The mean (expectation) value of r is

For hydrogen (Z = 1):

Orbital (r)/ag (r) (A)
1s 1.5 0.794
25 6.0 3.175
% 50  2.646
35 13.5  7.144
3p 125 6.615
3d 10.5  5.556

(3) Root-Mean-Square (RMS) Radius

The expectation value of 7?2 is

na}

2 _

[5n® +1=31(1 + 1)] |
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Thus, the RMS radius is

n

TFrms = @
T
For hydrogen (Z = 1):

Vom2+1-=3l1(1+1)|

Orbital 7ryms/ag Tms (A)

Is 1225 0.648
2s 707 374
2p 624 3.30
3s 173 9.16
3p 165  8.73
3d 147 7.78

(4) Scaling Behavior

All three characteristic radii of an orbital |n,l, m;) are independent
of m; and scale approximately as

n-ay
T X
Z
Specifically,
A n2ay () ~ 1.5n%ay . 1.2 n%ay
mp 7 7 ) rms 7

Namely, rpp < s < (7).
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