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Quantum Mechanics II
In November, 1925, 
Schroedinger gave a 
seminar in Zurich on the 
wave notions of de Broglie. 
There, Debye suggested 
that a wave equation might 
exist that captured de 
Broglie’s ideas. Within a 
few weeks, Schroedinger
proposed his famous wave 
equation.
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Here, \(x,t) is the time-dependent wave 
function, and

\(x,t) is determined by solving this equation 
for a given potential V(x). For reasons that 
will become clear, V(x) is assumed to be 
real, but, given the factor i, \(x,t) is, in 
general, complex. 



For tre
i(kX-ut)

= e(px - zt)

ine4" = (it)T = E4

4 = (p)4
4 = (p)(= p)4= 4

-4= 4

D E4 = (4



4

The time-dependent Schroedinger
equation is said to be a linear equation
because if ψ1(x,t) and ψ2(x,t) are 
solutions, ψ(x,t) = a1 ψ1(x,t) + a2 ψ2(x,t), 
where a1 and a2 are complex numbers, is 
also a solution. The idea of adding 
solutions together to obtain another 
solution is called superposition.
Since observables such as position, 
momentum, energy, etc. are real numbers, 
the interpretation of ψ(x,t) must be 
carefully considered.
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To get an idea of how to proceed, 
remember that a complex number has the 
form

where x and y are real numbers. To form 
a real number associated with z, complex 
conjugation is introduced as

and then z*z = |z|2 is real
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Now |ψ(x,t)|2 is real and if |ψ(x,t)|2dx is 
interpreted as the probability that x lies 
between x and x+dx, we must have

for all times t. In other words, the 
Schroedinger equation must guarantee that
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This is, in fact, the case. By differentiating 
with respect to time under the integral and 
then using the Schroedinger equation, one 
can show that the vanishing of the time 
derivative requires

This is usually satisfied by requiring ψ(x,t) 
to vanish at the boundaries.
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In most situations, the Schroedinger wave 
function must satisfy certain boundary
conditions that are

1. ψ(x,t) must be finite everywhere.

2. ψ(x,t) must be single valued.

3. For finite potentials, ψ(x,t) and 
dψ(x,t)/dx must be continuous.

4. ψ(x,t) must vanish as 
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Time-Independent Schroedinger Equation

The original form of the Schroedinger
equation is that of a partial differential 
equation in x and t. It can be solved by the 
method of separation of variables if V is 
time independent, which we will assume. 
Then, assuming

the partial derivatives become ordinary 
derivatives and the Schroedinger equation is
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Now, the left side depends only on t and the 
right side only on x. This can only be true if 
both sides equal a constant, say E. We then 
get two ordinary differential equations
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The last equation is first order and easily 
solved. The solution is

Solutions to the remaining second order 
differential equation must satisfy the 
boundary conditions. This is only possible 
for certain values of E. These E’s are the 
allowed energies of a quantum mechanical 
particle moving in the potential V(x). They 
are called the eigenvalues of the 
differential operator
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and the functions u(x) are called the 
eigenfunctions of the system. The equation

is known as the time independent 
Schroedinger equation. H resembles the 
classical expression for the energy
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if we make the (bold) identification

For a given eigenvalue E, the complete 
expression for ψ(x,t) is

The normalization integral in this case is
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If there are several different eigenvalues
En, each comes with an eigenfunction un(x) 
that can be normalized in this way. The 
general solution is obtained by 
superposition and can be written as
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You may ask ‘What guarantees that this way 
of determining the energy eigenvalues En 
always gives real values?’ It turns out that if 
V(x) is real and the boundary conditions are 
satisfied, then the eigenvalues of H are real.

It can also be shown that different 
eigenfunctions obey
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If the integral of any two different 
eigenfunctions vanishes, the functions are 
said to be orthogonal. Hence, the allowed 
energies of a quantum system obtained by 
solving the time-independent Schroedinger
equation are real and their eigenfunctions
are orthogonal.
In view of this, if we look back at the 
general ψ(x,t) obtained by superposition,
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and calculate the normalization integral

we find that the cross terms vanish and
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Notice that an is the amplitude of the nth

eigenfunction un(x) in the expansion and the 
sum of the |an|2 adds up to 1. This allows a 
probability interpretation of the |an|2 that 
we will exploit later.
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Time-Dependent Schroedinger Equation

1. |ψ(x,t)|2dx

2. Normalization

3. Boundary cond.

Separation of variables
For V(X)

for min
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Infinite Potential Well

0 a

For this simple potential, 
the time-independent 
Schroedinger equation is 
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For this potential, the particle cannot be 
outside the well, so u(0)=0 and u(a)=0. The 
solution to the Schroedinger equation is

Applying the boundary condition at x=0,

so B must vanish. This leaves the Asin(kx) 
term and if u(a) is to equal zero, then 
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We can’t set A=0 because this makes 
u(x)=0. We can, however, use the fact 
that sin(nS)=0 to conclude that the time-
independent Schroedinger equation has 
non-trivial solutions if ka=nS� There are 
infinitely many solutions
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Each of these solutions, or eigenfunctions, 
is associated with a unique energy level or 
eigenvalue. The energies are

The normalization integral is
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The normalized eigenfunctions are

You can check that the orthogonality
relation

is satisfied for these eigenfunctions. 
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The first four eigenfunctions are shown below.

u2(x)u1(x)

u3(x) u4(x)
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u1(x) is called the ground state wavefunction
and the remaining eigenfunctions are called 
excited state wavefunctions. All of the 
energy eigenfunctions are real. 

With the exception of the ground state, all 
eigenfunctions take on negative values and 
cannot be interpreted as probability 
distributions. This illustrates why it is 
necessary to use |ψ(x,t)|2 as the 
probability distribution for the position. 
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The probability distributions are

|u1(x)|2
|u2(x)|2

|u3(x)|2 |u4(x)|2
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Returning to the eigenfunctions, note that
as n increases the 
number of times 
the graph passes 
through zero 
increases. Not 
counting the end 
points, n=1 has no 
crossings, n=2 one    

crossing, n=3, two crossings, etc. These 
crossing are called nodes and the nth excited 
state has n nodes. 
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Suppose we now use superposition to 
construct a solution to the time-dependent 
Schroedinger equation. As a simple example, 
consider

The wave function is properly normalized 
since 
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At t = 0, a plot of the wavefunction is

<(x,0)

and the probability density at t = 0 is

|ψ(x,0)|2
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In quantum theory, the interpretation of a 
wave function like

is this: If the energy of a particle with 
this wave function is measured, only two 
results can be obtained, E1 and 4E1. The 
probability of measuring E1 is 

and of measuring 4E1 is
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Recalling our example of ψ(x,t),

we could imagine making a slight change in 
the coefficients

Here, too, a measurement of E will yield 
only E1 and 4E1 with the same probabilities, 
since
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In this case, the probability distribution 
at t = 0 is
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This change amounts to a resetting of the 
initial time, as can be seen from the 
previous case
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Now, suppose that you know the 
(normalized) wave function of a particle 
moving in an infinite well at t = 0 and you 
would like to know what energies you might 
measured and with what probability. You can 
expand ψ(x,0) in terms of the energy 
eigenfunctions as

Since the un(x) are orthogonal and 
normalized (orthonormal), the an’s are
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According to the rules of quantum 
mechanics, if an is non-zero, then En will be 
measured with probability | an|2. Further, 
for t>0

As an example, suppose ψ(x,0) is 
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Carrying out this process yields 

From this, we see that only the odd squared 
multiples of E1 occur, so a measurement of 
the energy would never result in 4 E1. The 
squared coefficients are 

which, when summed, add up to 1. 



8

How well does the summation describe ψ(x,0)? 

N = 20

_ψ(x,0)|2?
N = 20



9

The probability density _ψ(x,t)|2 evolves in 
time as
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Expectation Values and Averages

We have acknowledged that |ψ(x,t)|2dx 
is the probability that x is in the interval 
between x and x+dx. From probability 
theory, the average value or expectation
value of x, <x> is

This can also be written



For any physical observable O, its average
value or expectation value <Q) , can be
Calculated as

(0) =+@4(xt)
where a is its corresponding operator

.

For example : eigenfunction
1

< 07 & eigenvalue
M

X : X = X

p : = -in x
E : I (for F((x)

=Enu(x))
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This form is convenient because we might 
also want to compute the average value of H 
or p, both of which involve derivatives with 
respect to x as well as functions of x:

We can then write
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As an example, what is the average value of 
x for an eigenstate of a particle in an 
infinite well?

The result for <x2> can be calculated similarly.
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The expectation value of p is 

For <p2>,



14

These calculations provide a general 
definition for the uncertainties Δx and Δp. 
They are defined to be

For the particle in an infinite well, Δxn Δpn is



15

The expectation value of H in an eigenstate
is simple enough, since

This simple result enables us to calculate 
<H> for the time dependent case

Using orthogonality, the result is
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This confirms the interpretation of the an’s
as probability amplitudes whose absolute 
squares determine the probability that the 
energy En will be measured.
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The infinite square well 
illustrates many aspects of 
quantum mechanics. 
However, when the 
potential is finite there are 
other surprises.  

0 a

V0

E

I II By lowering the infinite 
barrier on the right to V0, 
we now have two regions, I 
and II with different 
values of the potential.
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For E<V0, the Schroedinger equations for 
regions I and II are

These can be rewritten as

The solutions to these equations are

For

VE
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This means that both BI and BII must vanish. 
Then,

At x = a, V is finite and hence the wave 
function and its first derivative must be 
continuous at this point. Hence, 

Imposing the boundary conditions gives
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It’s perhaps clearer if we write this as

If this pair of homogeneous equations for AI
and AII is to have a non-trivial solution, the 
determinant of the coefficients must vanish:

or 
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xcot(x)

22)2( x−− π
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The underlined terms are a transcendental 
equation that determines k, and thus E.
The solutions can be obtained by graphing 
both sides and finding where they cross. 
For a=1 and A=2π, 
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Harmonic Oscillator

For many smooth potentials we often can 
often expand about a minimum and look 
for motion near that minimum,

If V’’(x0) > 0, the 
motion is simple 
harmonic, so the 
quantum mechanical 
treatment of this 
potential is important. 
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If we take V(x) to be

where we have used the classical relation 
between the k and the angular frequency Z, 
the Schroedinger equation is

How do we go about solving this equation?
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The potential is symmetric 
about the origin and the 
ground state has no nodes. 
Its wave function should 
be symmetric and vanish as

An inspired guess is

Using
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the differential equation reads 

For this to work,

Choosing O to eliminate x2 gives 
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With this O, E is then

The ground state wave function is

and the normalization integral is  
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The normalized ground state wave function is

What about excited states? We know that 
the first excited state has one node, the 
second two nodes, etc. This can be 
accomplished by multiplying u0(x) by a 
polynomial in x,

where Hn(x) has n zeros.



8

These polynomials can be found and are 
proportional to the Hermite polynomals. 
This determines the energies of the 
excited states as 

and ensures that the eigenstates are 
orthogonal
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The first four wave 
functions are shown at 
the left.

⑧

①

Second excitedState

Ez= (2+i)
tw (withnodes

①

firstexcited state

E= (+w (withmode
ground state n=0
Er = Enw (withoute)

& zero-point energy)
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Tunneling

Classically, if a particle approaches a barrier 
with E>V0, it is transmitted. If E<V0, the 
classical particle will be reflected but the 
quantum particle can also tunnel through.
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In Regions I,II and III, the Schroedinger
equations are

If we set  
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the solutions are familiar: 

Remember that moves right and  
moves left. In region III, we can set G=0 
because there is only a transmitted wave 
there. 

At this point, we match solutions at x = 0 
and x = L, using, for example,
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with a similar expression connecting uI and 
uII at x = 0. The interesting quantity is the 
ratio |F|2/|A|2 that measures the tunneling 
probability. Solving for F, one finds

The tunneling probability is then
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When NL is large, this becomes

Suppose an electron is accelerated through 
a 5 volt potential and strikes a 10 volt 
barrier of width 0.8 nm. What fraction of 
the electrons penetrate the barrier?



15

Here, L=0.8 nm, V0=10 eV, E=5 eV and N is

From this, NL=9.2, which is large compared 
to 1. We can then use


