Quantum Mechanics IT

In November, 1925,
Schroedinger gave a
seminar in Zurich on the
wave notions of de Broglie.
There, Debye suggested
that a wave equation might
exist that captured de

B Broglie's ideas. Within a

[§ few weeks, Schroedinger
R proposed his famous wave
mvenaneeequation.
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L OY(x,t) BT OPP(a,t)
ih 5 = 9 A -V (x)Y(x,t)

Here, y(x,t) is the time-dependent wave
function, and
h

h(hbar) = — i=+—1.

2T

y(x,t) is determined by solving this equation
for a given potential V(x). For reasons that
will become clear, V(x) is assumed to be
real, but, given the factor i, y(x,t) is, in
general, complex. ;
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The time-dependent Schroedinger
equation is said to be a linear equation
because if y,(x,1) and y,(x,t) are
solutions,|y(x,t) = a; y,(x,1) + a, \|12(x,’r)_|
where a, and a, are complex numbers, is
also a solution. The idea of adding
solutions together to obtain another
solution is called superposition.

Since observables such as position,
momentum, energy, etc. are real numbers,
the interpretation of y(x,t) must be
carefully considered.



To get an idea of how to proceed,
remember that a complex number has the

form

Z =T T+ 1Y,

where x and y are real numbers. To form
a real number associated with z, complex
conjugation is introduced as

* .
z5 = x — 1y,

and then z°z = |z|2 is real
2= (z —y)(z +iy) = 2° +y° > 0.



Now |w(x,1)|2 is real and if |w(x,1)|2dx is
interpreted as the probability that x lies
between x and x+dx, we must have

[ daluta ) =1,

for all times t. In other words, the
Schroedinger equation must guarantee that

d o0
%/_Oo dx|y(x,t)* = 0.



This is, in fact, the case. By differentiating
with respect to time under the integral and
then using the Schroedinger equation, one
can show that the vanishing of the time
derivative requires

dy* (, t) dy(z, )]

dr w(%t) — W(%t) A = 0.

A LT——00

This is usually satisfied by requiring y(x,1)
to vanish at the boundaries.



In most situations, the Schroedinger wave
function must satisfy certain boundary
conditions that are

1. y(x,1) must be finite everywhere.
2. y(x,1) must be single valued.

3. For finite potentials, y(x,t) and
dy(x,t)/dx must be continuous.

4. y(x,1) must vanish as © — £oo.



Time-Independent Schroedinger Equation

The original form of the Schroedinger
equation is that of a partial differential
equation in x and t. It can be solved by the
method of separation of variables if V is
time independent, which we will assume.
Then, assuming

(@, t) = ulz) f(1)

the partial derivatives become ordinary
derivatives and the Schroedinger equation is
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L1 odft)y  RT 1 dPu(x)

th(t) dt  2mu(x) dz? Viz)
Now, the left side depends only on t and the
right side only on x. This can only be true if
both sides equal a constant, say E. We then

get two ordinary differential equations

h? d>u(z)

2m  dxz?

FV(x)u(xr) = Fu(x)

an
ih o Ef(t).
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The last equation is first order and easily
solved. The solution is

f(t) _ e—iEt/ﬁ.

Solutions to the remaining second order
differential equation must satisfy the
boundary conditions. This is only possible
for certain values of E. These E's are the
allowed energies of a quantum mechanical
particle moving in the potential V(x). They
are called the eigenvalues of the
differential operator
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he o d?
H= om da? Viz)
and the functions u(x) are called the

eigenfunctions of the system. The equation

is known as the time independent
Schroedinger equation. H resembles the

classical expression for the energy

2

E:p—+V(:L')
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if we make the (bold) identification

d
dx

» = —1h

For a given eigenvalue E, the complete
expression for y(x,t) is

U(z,t) = u(x)e EU

The normalization integral in this case is
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/—oo d:z:hb(l“at)ﬁ _ / dru*( zEt/h ne. )e—z‘Et/h

:/ dz |u(z)|” = 1.

If there are several different eigenvalues
E,. each comes with an eigenfunction u,(x)
that can be normalized in this way. The
general solution is obtained by
superposition and can be written as

N
Wz, t) = ape” Py, ().

n=1

14



You may ask ‘What guarantees that this way
of determining the energy eigenvalues E,
always gives real values?' It turns out that if
V(x) is real and the boundary conditions are
satisfied, then the eigenvalues of H are real.

It can also be shown that different
eigenfunctions obey

/_O:O dru (x)u,(z) =0 m #n.
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If the integral of any two different
eigenfunctions vanishes, the functions are
said to be orthogonal. Hence, the allowed
energies of a quantum system obtained by
solving the time-independent Schroedinger
equation are real and their eigenfunctions
are orthogonal.

In view of this, if we look back at the
general y(x,t) obtained by superposition,

N
Wz, t) = ape” Ty, ().
n=1
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and calculate the normalization integral

/_O:O dz|(z,t)[*? = /OO dx (g: ameiEmt/hum(x))*

0 m=1

X (Z aneiE’”t/ﬁun(az))

n=1

we find that the cross terms vanish and

o N
| delie ) =3 Jauf = 1.
0 n=1
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Notice that a, is the amplitude of the n'
eigenfunction u,(x) in the expansion and the
sum of the |a,|? adds up to 1. This allows a
probability interpretation of the |a,|? that
we will exploit later.
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‘ Time-Dependent Schroedinger Equation ‘

\d ¥ For V(x)
1 Jy(x,1)|2dx Separation of variables
2. Normalization v \4
3. Boundary cond. LS =" HH%(? = Byun(a)|




>

Infinite Potential Well

V(z) = {

0 for 0<z<a
oo tor z<Qorax>a

For this simple potential,
the time-independent
Schroedinger equation is

d*u(x) 2mE

FPCI— u(x) = —k*u(w).

omE
k= 7;;2




For this potential, the particle cannot be
outside the well, so u(0)=0 and u(a)=0. The
solution to the Schroedinger equation is

u(x) = Asin(kx) + B cos(kx).
Applying the boundary condition at x=0,

0 = Asin(0) + Bcos(0) = B,

so B must vanish. This leaves the Asin(kx)
term and if u(a) is to equal zero, then



0 = Asin(ka).

We can't set A=0 because this makes
u(x)=0. We can, however, use the fact
that sin(hn)=0 to conclude that the time-
independent Schroedinger equation has
non-trivial solutions if ka=nn. There are
infinitely many solutions

A, sin (@) .

a



Each of these solutions, or eigenfunctions,
is associated with a unique energy level or
eigenvalue. The energies are

h2k2 TL27T2h2

E, = _ = n‘FEy.
2m 2ma?

The normalization integral is

1 =|A,| / dx sin (mmt) = g A,l° .

a



The normalized eigenfunctions are

) = | 2sin (722,

You can check that the orthogonality
relation

/dazu )=0 m#n

is satisfied for these eigenfunctions.



The first four eigenfunctions are shown below.

1
u;(x) : u,(x)
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u,(x) is called the ground state wavefunction
and the remaining eigenfunctions are called
excited state wavefunctions. All of the
energy eigenfunctions are real.

With the exception of the ground state, all
eigenfunctions take on negative values and
cannot be interpreted as probability
distributions. This illustrates why it is
hecessary to use |y(x,t)|? as the
probability distribution for the position.



The probability distributions are

(=]

20f 2 20F
|uy(3)] | lup(x) |2

1.0F 1.0._

|u3(x)|2 /\ N/ /\qu;(x)l2
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Returning to the eigenfunctions, note that
as n increases the

number of times
=7  The graph passes
\/ through zero

increases. Not
/\ counting the end

/\ A/ \ . points, n=1 has no
\/ b \/ \/ crossings, n=2 one
crossing, n=3, two crossings, etc. These
crossing are called/nodes |and the n™ excited
state has n nodes.
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Suppose we now use superposition to
construct a solution to the time-dependent
Schroedinger equation. As a simple example,
consider

h(z,t) g}wlt/ "V2sin (72) — @ME”/ "V2sin (27z) .

The wave function is properly normalized

since
B+ (5 -
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At t =0, a plot of the wavefunction is

1 W(x,0)
10fF
osf
; 02 A 0.6 0.8 1.0
05f

and the probability density at t+ =0 is
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In quantum theory, the interpretation of a

wave function like

Yz, t) = %e_iElt/h\@ sin (7x) — ?e_iwlt/h\/ﬁ sin (27x) .
is this: If the energy of a particle with
this wave function is measured, only two
results can be obtained, E, and 4E,. The

probability of measuring E; is
= (1) -
and of measuring 4E; is
P4E,) = (_\/g) _ 2
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Recalling our example of y(x,1),
V3 _

| .
Y(x,t) = ie_ZElt/h\/isin () — € MBIt/ /9 sin (27)

we could imagine making a slight change in
the coefficients

. 3 .
w(ﬁﬁy t) _ %e—zElt/hﬂSin (Wx) o ge—zélElt/h\/iSin (27TCIZ) .

ere, too, a measurement of E will yield
only E; and 4E, with the same probabilities,

2

1
1




In this case, the probability distribution
at t=0is

J——u

30F

»
«
!




This change amounts to a resetting of the
initial time, as can be seen from the
previous case




Now, suppose that you know the
(normalized) wave function of a particle
moving in an infinite well at + =0 and you
would like to know what energies you might
measured and with what probability. You can
expand y(x,0) in ferms of the energy
eigenfuncﬁons as

Z U (2

Since the u (x) are orThogonal and
normalized (orthonormal), the a,'s are

/Oa dx u,(z)Y(x,0) = lam/ AT Uy (T) Uy () = .

m=
S}



According to the rules of quantum
mechanics, if a, is hon-zero, then E, will be
measured with probability | a,|?. Further,
for >0

(a,t) = 3 ane By (),

n=1

As an example, suppose y(x,0) is

/122 for 0<z<0.5

w(x,O){ V12(1 —z) for 05 <z <1

...................




Carrying out this process yields

> 8v/3 . ’
,t _ —Z(Qk—l) Elt/ﬁﬂ . Qk'_]. |
ot = 3 in (25 — 1))

From this, we see that only the odd squared
multiples of E; occur, so a measurement of
the energy would never result in 4 E;. The

squared coefficients are

which, when summed, add up to 1.



How well does the summation describe y(x,0)?

N =20




The probability density |w(x,t)|2 evolves in
Time as




Expectation Values and Averages

We have acknowledged that |y(x,1)|2dx
is the probability that x is in the interval
between x and x+dx. From probability
theory, the average value or expectation
value of x, <x> is

@) = [ dealile,n)f

This can also be written

(x) = /_O:O dr ™ (x,t) x(x,t).
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This form is convenient because we might
also want o compute the average value of H
or p, both of which involve derivatives with
respect to x as well as functions of x:
2 2
He - vy p=—in

2m dx? dx

We can then write

(Hy = /OO dx*(x,t) H Y(x,t)

p) = / dzx ™ (z,t) (_Zhddx) (x,t).

11



As an example, what is the average value of
X for an eigenstate of a particle in an
infinite well?
) a nm
(), = g/o drx sin” (@) S /o dtt(1 — cos(2t))

a n2m2

nm

a |2t 1 4
(), = O {2 — 58111(215) — iCOS(Qt)L =5

The result for <x4> can be calculated similarly.

a2 nm

9 a
@ = = [ doa® sin? (@) _ dt £2(1 — cos(2t))
a Jo

a 373 Jo
2
5 a 3 )
n — — 1— .
<ZE > 3 ( 27?,2772
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The expectation value of p is
d
(P = / dx sin (n;m:) <_2hdaz> sin (?)

— _2h2n_7r/ dx sin <@> COS (@)
a a

By = —i sin? (@) ~ 0.
a a 0

PP = E/G dx sin (?) (— h— ) sin (?)

d
dx
2n27r2h2 nmwx 27’12
(p*), = /d:c sin ( )




These calculations provide a general
definition for the uncertainties Ax and Ap.
They are defined to be

Az = y/(22) — (z)?
Ap = (2 — ()2

For the particle in an infinite well, Ax, Ap,, is

1 h
Az, Ap, = nmy| — — h> s
B T T A

14



The expectation value of H in an eigenstate
is simple enough, since

/ dru, (x) Hu,(x E/ dxu ( = F,,.

This simple result enables us to calculate
<H> for the time dependent case

Y(x,t) = i ane” Frtihy, ().

n=1

Using orthogonality, the result is
— i E, |a.|”.

15



This confirms the interpretation of the a,'s
as probability amplitudes whose absolute
squares determine the probability that the
energy E, will be measured.
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The infinite square well
illustrates many aspects of
quantum mechanics.

Vo I However, when the
E potential is finite there are
other surprises.
’ T - IT By lowering the infinite

barrier on the right to V,,,
v { 0 if 0<z<a we now have two regions, I
W it  z>a and IT with different

values of the potential.
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For E<V,, the Schroedinger equations for

regions I and II are

R du(e) R gy
C9m dx? Eu(z), o, de( |

-+ %’LL]](CE) — E’UJ](CL‘).

These can be rewritten as

dzzigx) +kur(z) = 0, k= \/QmE/h2
d*urr(x) o
dZQ — Kurr(z) = 0, K= \/Qm(Vg ; E)/h*. (é::%

The solutions to these equations are
= Aysin(kx) + By cos(kx),

U][(.I') = A[]G_mc—FB[]BmC.

Q
~
&



Imposing the boundary conditions gives
UI<O) = A[O + B[ = O,

urr(x — o0) = A0+ By lim e = 0.

r—00

This means that both B; and B;; must vanish.
Then,

ur(x) = Arsin(kz), wu(x) = Arre™ ",

At x =a, V is finite and hence the wave
function and its first derivative must be
continuous at this point. Hence,

Arsin(ka) = Ape ™
kAjcos(ka) = —krApe "

10



I't's perhaps clearer if we write this as
Siﬂ(k’CL)A[—B_’WA][ = 0
kcos(ka)A; + ke " A = 0.
If this pair of homogeneous equations for A;

and A is to have a non-trivial solution, the
determinant of the coefficients must vanish:

ksin(ka)e " + k cos(ka)e™ " = 0,
or

2ma?V

h?

kacot(ka) = —ka = —V A2 — k202 A* =

11
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0.8

0.6

The underlined terms are a transcendental
equation that determines k, and thus E.

The solutions can be obtained by graphing
both sides and finding where they cross.
For a=1 and A=2r,

ki, = 2.698 k;=D5.675 7 979 2

31.18 K2
E, —

Eo =

2ma?

kQ = 9.284 /‘332:3300 N 2ma?

1.0

...........




Harmonic Oscillator

For many smooth potentials we often can
often expand about a minimum and look
for motion near that minimum,

1 17 9
V() V(z) =V(zo) + 5‘/ (zo) (T — x0)~.

hanmonic If V'(x,) >0, the
motion is simple
harmonic, so the
quantum mechanical
piatomic  Treatment of this

molecule

potential is important.
2

Potential energy




If we take V(x) to be

o } 2 1 2 .2
Vi) = kazf = Smwa’,
where we have used the classical relation
between the k and the angular frequency o,
the Schroedinger equation is
e dPu(z) 1,

R T— + W u(x) = Eu(x).

How do we go about solving this equation?



=
=
S

The potential is symmetric
about the origin and the
ground state has no nodes.
"~>* Tts wave function should
""""""""""" be symmetric and vanish as

Potential energy

X

—a a ’U,(Qj‘) — O When €r — :“:OO-

Position

@ An inspired guess is

w(z) = Ae

e o (4)\2.:1:2 — 2)\> e~



the differential equa’rion reads
2
/1/{ - (4222 —20) 72 mw ;/*} :Eyw.

For this to work,

1 2\2h? 2
(—mwQ— )\h)$2+&:E.
2 m

Choosing A to eliminate x° gives

mw

A= ——.
2h



With this A, E is then

1
EO = —hw.
2

The ground state wave function is

Uo(ﬂf) _ Ae—mwa:Q/Qh’

and the normalization integral is

o0 2 h o0 2 h
]A\Q/ dr e ™% /h = A7 \/—/ due ™ = |A|’ KL}



The normalized ground state wave function is

(%) H/4 oMW z? /2h
h |

uo(r) =

What about excited states? We know that
the first excited state has one node, the
second two nodes, etc. This can be
accomplished by multiplying uy(x) by a
polynomial in x,

Uy () = Hy(2)ug(x),

where H (x) has n zeros.



These polynomials can be found and are
proportional to the Hermite polynomals.
This determines the energies of the
excited states as

1
E, = (n+ 5) hw.,

and ensures that the eigenstates are
orthogonal

/_O:Od:v U (T)up(z) =0 m # n.



The first four wave
functions are shown at

RN the left.
—A#&H \ Cmni octed skl

¥ (2+ ) #"J (wrg‘mo’e;
\ 4V?}'4qu€c{ S*’Q

lllll

/\ [;': (H-z\‘lﬂw (“,ﬂ,\qod;
fa L




Neutron-proton

Vir)

s .

LJ Proton-proton

(b)

h-MeV

a particle
el

Figure 12.5 (a) A detailed
study of neutron + proton and
proton + proton scattering re-
veals (b) the shape of the poten-
tial describing each interaction.
The proton-proton interaction
includes the Coulomb potential
(not to scale).

Figure 12.11 The potential
energy barrier for an alpha parti-
cle is shown. The Coulomb bar-
rier Vg is much greater than the
typical alpha-particle energies
produced by radioactive sources.
Classically a 5-MeV particle inside
the nucleus or scattered from
outside cannot penetrate the

barrier.



Tunneling

V(x)
V(x)
E,S Classical
O behavior
a
R 2| I _— =
PartiCle I II III
Vo QE > Yo
X
0 L 0 L

Region I Region I Region III

Classically, if a particle approaches a barrier
with B>V, it is transmitted. If E<V,, the
classical particle will be reflected but the
quantum particle can also tunnel through.



In Regions I,IT and IITI, the Schroedinger
equations are

2
i (x) Quantum d ul 2,rrLE' —
behavior daj2 _2 UI —
/'/E);(ponential d2UII 2m
\:\ niin. dr? o ?(% _E)ull —
/ " ! \ngsoidal - d2 2
st urg | 2mop
inusoida da’;2 —I_ ? u’[][ _
If we set
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the solutions are familiar:
ur(xr) = Aet® 4 Be ke
urr(x) = Ce ™ + De™

U[[](f) — Feikx—l—Ge_ikm.

Remember that ¢** moves right and e
moves left. In region III, we can set 6=0

because there is only a fransmitted wave
there.

At this point, we match solutions at x =0
and x =L, using, for example,

12



UU(L) — UIH(L)
dU[](L) dU[][(L)

dx dx

with a similar expression connecting u; and

urr at x = 0. The interesting quantity is the
ratio |F|?/|A|2 that measures the tunneling
probability. Solving for F, one finds

Qe—ika
2 cosh(ka) + i(k/k — k/k) sinh(ka)|

L.
=

The tunneling probability is then

13



|[F|* m V2 sinh?(kL) -
aE ' aEm B |

When «L is large, this becomes

F|? E( E) okl
> 16 — (1 — — e
A2 7 V)

Suppose an electron is accelerated through
a b volt potential and strikes a 10 volt
barrier of width 0.8 nm. What fraction of
the electrons penetrate the barrier?

14



Here, L=0.8 nm, V,=10 eV, E=b eV and x is

V2m(Vo — E)
h
\/2(0.511 x 106eV/c?)(10eV — 5eV)

6.58 x 10~16eV s

3.43 x 1018~
k= > 115 %100t
C

From this, kL=9.2, which is large compared
to 1. We can then use

| F|? <5e\/)< (5ev>> 184 s
—— =10 1 — F=4.1x10"°.
A2 10eV 10ev/) € :
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