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Hydrogen Atom

In quantum mechanics, the hydrogen atom 
is described as an electron moving in 
response to its Coulomb attraction to the 
(much heavier) proton. The potential is

where 

= 197 (Mer) · (fm)
5(10%ev) . (1015m)
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Since the potential depends only on r, it is 
convenient to use spherical polar coordinates 
r, θ and φ to solve the Schroedinger equation.

The important point here 
is that the potential 
energy that enters the 
Schroedinger equation, 
V(r), is independent of 
the angular variables. The 
θ, φ solution can thus be 
calculated once and for all 
using separation of 
variables. 
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The Schroedinger equation is

Tackling this looks rather formidable, but if 
we put 

we get three separate equations 
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The solutions to the angular equations, while 
not easy to obtain, results in an infinite 
collection of functions

For every l there are (2l+1) m’s. The 
interpretation of these quantum numbers 
is that the square of the angular 
momentum L is 

and the z-component is
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Explicit Yl
m’s are 

shown in the 
Table.

Note that the 
pattern of angular 
momentum quanti-
zation is very 
different from 
Bohr’s model. In 
particular, l = 0 is 
allowed.
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Just like the energy eigenfunctions in one 
dimension, the Yl

m(θ,φ) satisfy orthogonality
relations. Since dxdydz = r2drsinθdθdφ, the 
angular integrals are

These functions serve as the angular part 
of any system with a potential V(r), and
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The Coulomb Potential

The remaining equation for R(r), the radial
equation, determines the actual energy 
levels E. In general, E will depend on l. Note 
that, for different l’s, the wave functions 
ψ(r,θ,φ) are orthogonal because their 
angular factors Yl

m(θ,φ) are orthogonal.

For a fixed l, the orthogonality of ψ(r,θ,φ) 
is determined by the radial integral
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For hydrogen, the radial equation is

From the form of the potential, the 
bound states are those with E < 0.

E

r
V(r)
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To solve for R(r), note that for r large, the 
radial equation reduces to

Hence, at large r, 

For r near 0, it can be shown that 

So, we know the behavior at the boundaries.
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Let’s focus on l = 0. We anticipate that 
the ground state has no nodes between 0 
and infinity, the first excited state has 
one node, etc. Since the solutions vanish 
exponentially fast as r approaches ∞, a 
solution of the form

where L(r) is a polynomial could work. 
Putting this into the l = 0 radial equation
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gives

If we try the polynomial

the coefficient of rn’ can only vanish if

These polynomials are Laguerre polynomials.
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The means that the s-state energies are

These are the Bohr levels with n = n’ + 1. 
This is clearly not the whole story because 
there are infinitely more levels for 

Taking the other angular momentum states 
into account gives a very similar formula
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For a given n there are many equal values 
of En corresponding to a variety of 
quantum numbers. For example, if n = 2, 
the single s-state with n’ = 1 and l = 0 and 
the three p-states with n’ = 0 and l = 1 
have the same energy. 

The energies En are said to be degenerate. 
For any n the degeneracy is n2. This is a 
new feature of this more complete 
description of quantum mechanics.
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Our expression for the radial solution 
for s-states takes the form

where Ln-1(r) is the polynomial

that satisfies 
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The ground state corresponds to n = 1, and 
the polynomial L0(r)  is just a constant. Our 
solution is

b0 is determined by normalization,

Note that the r2 appears because the 
volume element is dxdydz = r2drsinθdθdφ.
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Normalizing hydrogen wave functions is 
relatively easy because of this simple result

Using this formula, the normalized ground 
state radial wave function is

and the ground state probability density is 
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These look like

R1

r

r2|R1|2

r
These graphs illustrate

a. The radial wave function is finite at r = 0.

b. The electron is not located at r = a.

c. The most probable value of r is r = a.

(R ,()=0
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R2

r

For the n = 2 s-state, the graphs are
r2|R2|2

r
Here, the circumstances are

a. The radial wave function is finite at r = 0.

b. There are two peaks in the probability 
density, neither at r = 4a, the Bohr value.

c.The is one node in the radial wavefunction.ve

N



9



12

|Y2
0|2

The angular distributions for the l = 1,2 
probabilities and very directional. 

|Y1
0|2 |Y1

1|2
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The complete hydrogen spectrum is made up 
of many lines. The S levels start at n = 1. The 
P levels start at n = 2, are degenerate with 
the S levels for n = 2,3,…. The D levels begin 
at n = 3 and are degenerate with the S and P 
levels for n = 3,4,… . 

Various photon transitions can occur 
between these levels. The dominant among 
these satisfy (electric dipole transition)
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The photon 
decay patterns 
are outline in 
this figure. 
Note that the 
situation is more 
complex than 
the Bohr model.

1 = 0, 1
,

2,...

m= -l
,
-(+ ),... 0... - l - , +l

Due to

Electric dipole transition
= I
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We know that the electron in a hydrogen 
atom is characterized by an principle 
quantum number n = 1,2,3,…, and an angular 
momentum quantum number l = 0,1,2,…, 
where, for a given n, l = 0,1,…,n � 1. The 
angular wave functions a (2l�1) fold 
degenerate and are labeled by m, with 

For all this complicated structure, the 
hydrogen energy is simply
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Magnetic Fields and the Quantum Number m

The spherical symmetry of the Coulomb 
potential implies that the 2l�1 values of m 
in the angular functions Yl

m(θ,φ) all have 
the same energy. If a hydrogen atom is 
placed in a magnetic field B, this 
degeneracy is removed. The potential is 
modified by an additional term

& Bohr magneton
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For the 2p state, the effect is to split the 
level into three different energies. 

In a 2 Tesla field, the 
splitting is small

Pieter Zeeman
Nobel Prize 
1902
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The observation of magnetic splitting in the 
spectrum motivated Otto Stern and Walter 
Gerlach to search for evidence of spatial 
splitting using a atomic beam and an 
inhomogeneous magnet. 

1922
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The Stern-Gerlach experiment used a silver 
atomic beam that passed through the magnet 
and produced two spots on the screen.
In 1925, Dutch graduate students George 
Uhlenbeck and Samuel Goudsmit proposed 
that the electron itself had an intrinsic spin 
with two ms values, 1/2 and -1/2.   

S=+i h
=F+1) t

=



6

Because of its charge, the electron would 
also have a magnetic moment that 
interacted with a uniform magnetic field as

The extra factor of 2, that was determined 
from experiment, can only be derived by a 
relativistic treatment. As we shall see, the 
inclusion of electron spin is crucial in 
understanding atomic structure. ↳

Divac Equation

(5=mt)
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With the electron spin, the hydrogen energy 
eigenstates have the form

where the last factor is the spin wave 
function and ms = 1/2, -1/2.  

The degeneracy of any level is, including 
the electron spin, 2n2. This does not alter 
the energy levels. They remain
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We have developed explicit forms for the 
radial and angular wavefunctions. The spin 
wave function is usually treated as a two-
component column vector. 

Since there are only two values of ms, the 
notation is often shortened to
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The x, y and z components of the spin are 
then represented by 2 x 2 matrices 
introduced by Wolfgang Pauli.

In this picture, F� and F� are eigenvectors 
of Sz.
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The complete picture of a hydrogen 
eigenstate is

that is, it is an eigenstate of four physically 
measurable quantities, energy, the square of 
the orbital angular momentum, its z 
component and the z component of spin. 
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Although more complicated, the superposition 
principle works and we can write the complete 
time-dependent solution as

The probability interpretation of the 
coefficients still applies, so, for example, 
the probability that a measurement of the 
energy will yield E = -mc2D�/8 is
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