Hydrogen Atom

In quantum mechanics, the hydrogen atom
is described as an electron moving in
response to its Coulomb attraction to the
(much heavier) proton. The potential is
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Since the potential depends only onr, it is

convenient to use spherical polar coordinates

r, 0 and ¢ to solve the Schroedinger equation.
The important point here

eew IS that the potential

o energy that enters the

—  Schroedinger equation,

N4 V(r), is independent of

S “»  the angular variables. The

=i 0, ¢ solution can thus be

o (T calculated once and for all

= cos” & (Polarangle) using separation of

¢ = tan™! L (Azimuthal angle) .
w ; variables. 3
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The Schroedinger equation is

e, 1 0 0 1 0?
S2{8) o) e

or r2 sinf o6 00 r2 sin’6 8(/52

Tackling this looks rather formidable, but if

we put
¥(r,0,0) = R(r)©(0)2(¢),

we get three separate equations
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The solutions to the angular equations, while
not easy to obtain, results in an infinite
collection of functions

Y™(0,¢) with £ = 0,1,2,..., m=—,—(+1,...,0—1,0.

For every | there are (2/+1) m's. The
intferpretation of these quantum numbers
is that the square of the angular
momentum L is

L? =00+ 1)R2,

and the z-component is
L., = mbh.



7.2 ? Normalized Spherical Harmonics Y(0, ¢)
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Just like the energy eigenfunctions in one
dimension, the Y "(0,$) satisfy orthogonality
relations. Since dxdydz = rédrsin6d6d¢, the
angular integrals are

s 27 ,
/desme/ do Y (0, 0)Y™(0,8) = Ofor & #0m! #m,
0 0
7 2T
/desinef do Y0, 8))> = 1.
0 0

These functions serve as the angular part
of any system with a potential V(r), and

w(rv 0, gb) — R?”M(T) )/Em(ea Qb)



The Coulomb Potential

The remaining equation for R(r), the radial
equation, determines the actual energy
levels E. In general, E will depend on |. Note
that, for different I's, the wave functions
y(r,0,0) are orthogonal because their
angular factors Y"(0,$) are orthogonal.

For a fixed |, the orthogonality of w(r,0,¢)
is determined by the radial integral

/Oodrran/g(r)Rng(r) = (0 for n' #n.
0



For hydrogen, the radial equation is

ii(Q@) Aty 2m <E+a—hc)R _ 0

r2 dr dr r2 B2 r

R 2dR (({+1) 2m ahe

e R+ (E+ )R = 0.
d’r2+rdr r2 +h2< 7“)

From the form of the potential, the
bound states are those with E < 0.

0.5 1.0 13 =l ri
-6
-3}k /
-10L




To solve for R(r), note that for r large, the
radial equation reduces to

d*R(r)
dr?

2mkE
he

— Kk*R(r) =0, with xk = \/—

Hence, at large r,
R(r) ~ Ae™"".

For r near O, it can be shown that
R(r) — Br*.

So, we know the behavior at the boundaries.
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Let's focus on | =0. We anticipate that
the ground state has no nodes between O
and infinity, the first excited state has
onhe node, etc. Since the solutions vanish
exponentially fast as r approaches o, a
solution of the form

R(r) = L(r)e "",

where L(r) is a polynomial could work.
Putting this into the | =0 radial equation

d?R 2dR 2m ahc
-t -+ — | F4+— | R=0
drz_l_rdr—l_hQ( +7“>
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gives
rL"(r) 4+ 2(1 — kr)L'(r) + 2(meca/h — k) L(r) = 0.

If we try the polynomial
Ln/(T) - ki_: bkrk,

the coefficient of r" can only vanish if

(—2n'k + 2(meca/h — k) by = 0
mea

(n' +1)h

K =

These polynomials are Laguerre polynomials.
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The means that the s-state energies are

he o, mc’a?

E=——K =— '=0,1,...
om' 2(n’' +1)%° " o

These are the Bohr levels with n=n"+ 1.
This is clearly not the whole story because
there are infinitely more levels for

(=1,2.3, ...

Taking the other angular momentum states
into account gives a very similar formula

mc2oz2 mc2oz2

B, = — S C0=0,1,...,n—1.
on? o(n' + €+ 1)?2 "
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For a given n there are many equal values
of E, corresponding to a variety of
quantum numbers. For example, if n =2,
the single s-state with n'=1and | =0 and
the three p-states withn' =0 and | =1
have the same energy.

The energies E, are said to be degenerate.
For any n the degeneracy is n. This is a
new feature of this more complete
description of quantum mechanics.
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Our expression for the radial solution
for s-states takes the form
i

Rn — Ln— —r/(na)’ — )
o(7) 1(r)e a p—

where L, (r) is the polynomial

n—1
L,_1(r) = Z b1
° ° k:O
that satisfies

rL"(r) 4+ 2(1 — kr)L'(r) + 2(mca/h — k) L(r) = 0.



The ground state corresponds to n=1, and
the polynomial Ly(r) is just a constant. Our
solution is

Rlo(T> — boe_r/a.
by is determined by normalization,
/ood’r r2 |Rio(r)|” = 1.
0

Note that the ré appears because the
volume element is|dxdydz = rédrsin6dodo.




Normalizing hydrogen wave functions is
relatively easy because of this simple result

> n_—A\r 1 > n_—u TL'
/Od'rre :)\n+1/0 duu”e :)\n+1‘

Using this formula, the normalized ground
state radial wave function is
2
Rm(T) _ ﬁe—r/a7
and the ground state probability density is

4
r*Ray(r) = 57“26_27“/“.
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These graphs illustrate

a. The radial wave function is finite at r = O.

b. The electron is not located at r = a.

c. The

most probable value

of risr = a.
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For the n =2 s-state, the graphs are

0sp 5 of
RZ 5 | RZ -|o.15'-
06t '

...................................

' r
Here, the circumstances are

a. The radial wave function is finite at r =0.

b. There are two peaks in the probability
density, neither at r = 4a, the Bohr value.

c.Thép\’is one node in the radial wavefunctiof.



Hydrogen Atom Radial Wave Functions
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The angular distributions for the | =1,2
probabilities and very directional.
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TheMrogen atom

Y imlt, 0, Q) Atomic Wavefunctions
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The complete hydrogen spectrum is made up
of many lines. The S levels start at n=1. The
P levels start at n= 2, are degenerate with
the S levels for n=2,3,.... The D levels begin
at h = 3 and are degenerate with the S and P
levels forn=34,....

Various photon transitions can occur
between these levels. The domln T among
these satisfy ( electiic yole. Lhuns "'»

An = anything, Al =+1, Am =0,=%1
E, = Ey—E,=hw.
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Note that the
situation is more

complex than
the Bohr model.
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We know that the electron in a hydrogen
atom is characterized by an principle
quantum number n=12,3,..., and an angular
momentum quantum number 1=0,1,2,...,
where, for agivenn|l=01,...n—1|The
angular wave functions a (21+1) fold
degenerate and are labeled by m, with

m=0,+1,+2,..., £/ —1),£L.

For all this complicated structure, the
hydrogen energy is simply
mec? o - 13.6eV

E = — —
n N2 n2 13




Magnetic Fields and the Quantum Number m

The spherical symmetry of the Coulomb
potential implies that the 2|+1 values of m
in the angular functions Y"(0,0) all have
the same energy. If a hydrogen atom is
placed in a magnetic field B, this
degeneracy is removed. The potential is
modified by an additional term

h
Vi Mag = upmyB, up = 26— — 5.79 x 107° eV/T.

Me
s majmgfon
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For the 2p state, the effect is to split the
level into three different energies.
" Ina?2 Teslafield, the

2p =1 o splitting is small
- AE)a, = 1.16 x 107*eV.

Energy

!

Pieter Zeeman
Nobel Prize
1902

ls

ool RN
Il Il
o -]
- |.
[ Ij

(b)



The observation of magnetic splitting in the
spectrum motivated Otto Stern and Walter
Gerlach to search for evidence of spatial
splitting using a atomic beam and an
inhomogeneous magnet.

ra

Atomic e 4 \

beam
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1922
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The Stern-Gerlach experiment used a silver
atomic beam that passed through the magnet
and produced two spots on the screen.

In 1925, Dutch graduate students George
Uhlenbeck and Samuel Goudsmit proposed

that the electron itself had an intrinsic spin
with two m, values, 1/2 and -1/2.

T S) S: \ s(s+9) )R

€
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Because of its charge, the electron would
also have a magnetic moment that
interacted with a uniform magnetic field as

(S;: Yg‘\g\) VSMag — ¢ SzB = QMBmSB.

m

The extra factor of 2, that was determined
from experiment, can only be derived by a
relativistic treatment. As we shall see, the

inclusion of electron spin is crucial in
understanding atomic structure.
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With the electron spin, the hydrogen energy
eigenstates have the form

wnfmgms (77) — RnE(T)YVEmE (97 ¢)Xm87

where the last factor is the spin wave
functionand m,=1/2, -1/2.

The degeneracy of any level is, including
the electron spin, 2né. This does not alter
the energy levels. They remain

mc2a? 13.6eV
E, = — = — .
In? n?




We have developed explicit forms for the
radial and angular wavefunctions. The spin
wave function is usually treated as a two-
component column vector.

() =)

Since there are only two values of m,, the
notation is often shortened to

(i) e (2)



The x, y and z components of the spin are
then represented by 2 x 2 matrices
introduced by Wolfgang Pauli.

A0 1 hi(0 —i A1 0
Sx_Q(l 0)’ Sy‘z(z o>’ SZ‘z(o —1)'

In this picture, x* and x~ are eigenvectors

of S,. o -
2z X — 5



The complete picture of a hydrogen
eigenstate is

mCQOZQ

Hmemgm, (T) = — o2 Unemgms (T)
L, (7) = (0 + 1)y, (7)
Lonomem(T) = MR Pnpmym, (T)
S Vntmems (T) = Msh Ynpmym, (T)

that is, it is an eigenstate of four physically
measurable quantities, energy, the square of
the orbital angular momentum, its z
component and the z component of spin.
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Although more complicated, the superposition
principle works and we can write the complete
time-dependent solution as

oo n—l1 1/2

\P(Fa t) — p Sj Z Z anfmgmswnemgms (7:»>€—iEnt/h.

The probability interpretation of the
coefficients still applies, so, for example,
the probability that a measurement of the
energy will yield E = -mc20?/8 is

1/2

1
P(E =—-mc*a®/8) =) Z > | G2emym.|” -
(=0

my=—L mg=—1/2 11
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