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1 How to derive the Maxwell-Boltzmann
distribution for an ideal gas?

The Maxwell-Boltzmann distribution describes the distribution of

speeds of particles in an ideal gas at a given temperature. Here is a

step-by-step derivation of the Maxwell-Boltzmann speed distribution

function:

1.1 Assumptions:

- The gas consists of a large number of identical non-interacting

particles (ideal gas assumption), moving with a speed much less than

the speed of light.

- The motion of the particles is random, and the system is in

thermal equilibrium at temperature T .

- The gas is in a three - dimensional space.

1.2 Probability in momentum space

We start with the principle of statistical mechanics. The probability

P of a particle having a certain energy E in a system at temperature

T is given by the Boltzmann factor: P ∝ e−
E
kT

For a particle of mass m with momentum p⃗ = (px, py, pz), the

kinetic energy E = p2

2m =
p2x+p2y+p2z

2m , where p = |p⃗|.
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The probability density function f (px, py, pz) of a particle hav-

ing momentum components px, py, and pz is proportional to the

Boltzmann factor:

f (px, py, pz) = Ce−
p2x+p2y+p2z

2mkT

where C is a normalization constant.

1.3 Normalization

To find the normalization constant C, we use the fact that the total

probability of finding a particle with any momentum must be equal

to 1. That is,∫∞
−∞

∫∞
−∞

∫∞
−∞ f (px, py, pz)dpxdpydpz = 1

Substituting f (px, py, pz) = Ce−
p2x+p2y+p2z

2mkT into the above integral,

we get:

C
∫∞
−∞ e−

p2x
2mkT dpx

∫∞
−∞ e−

p2y
2mkT dpy

∫∞
−∞ e−

p2z
2mkT dpz = 1

We know that the Gaussian integral is
∫∞
−∞ e−ax2dx =

√
π
a . In

our case, a = 1
2mkT , so

∫∞
−∞ e−

p2i
2mkT dpi =

√
2πmkT for i = x, y, z

Then C(2πmkT )
3
2 = 1, and C =

(
1

2πmkT

)3
2

1.4 Transformation to speed distribution

The speed v of a particle is related to its momentum by p = mv. The

volume element in momentum space dpxdpydpz can be transformed
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into a volume element in speed space. In spherical coordinates in

momentum space, dpxdpydpz = p2 sin θdpdθdφ, and p = mv. As

a side remark, we note that the phase space factor p2dp = m3v2dv

accounts for the fact that there are more states available at higher

momentum or speed in three-dimensional space.

The probability density function of speed f (v) is obtained by

integrating the angular variables θ and φ (since we are only interested

in speed, not direction of motion).∫ 2π

0 dφ
∫ π

0 sin θdθ = 4π, and
∫
p2dp = m3

∫
v2dv.

The probability density function of speed f (v) is given by:

f (v)dv = 4π
(

m
2πkT

)3
2 v2e−

mv2

2kT dv

This is the Maxwell-Boltzmann speed distribution function, which

gives the fraction of gas particles with speeds between v and v + dv

in an ideal gas at temperature T .
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1.5 The Boltzmann factor in statistical me-
chanics

In statistical mechanics, the Boltzmann factor is a crucial concept

and is expressed as e−
E
kT , where:

- E represents the energy of a particular state of a system.

- k is the Boltzmann constant, which has a value of approximately

1.38× 10−23J/K.

- T is the absolute temperature of the system in Kelvin.

The Boltzmann factor is used to describe the relative probability

of a system being in a particular energy state at a given temperature.

For a system in thermal equilibrium, the probability Pi of the system

being in a state i with energy Ei is proportional to the Boltzmann

factor:

Pi =
e
−Ei
kT

Z

where Z is the partition function, which is given by the sum of

the Boltzmann factors over all possible states of the system:

Z =
∑

i e
−Ei

kT

The partition function Z serves to normalize the probabilities so

that
∑

i Pi = 1.

When relating probability to the number of states, the number

of systems in a state ni is related to the total number of systems N

by ni = N e
−Ei
kT∑

j e
−
Ej
kT

. The probability Pi of a system being in state i
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can also be expressed as Pi =
ni
N . Hence, the Boltzmann distribution

is Pi =
e
−Ei
kT∑

j e
−
Ej
kT

,

and

− ln (niN ) =
Ei
kT + c,

where c is a normalization constant.

The Boltzmann factor plays a vital role in various aspects of sta-

tistical mechanics, such as in calculating thermodynamic properties

like the internal energy U and entropy S of a system.

We note that the Boltzmann distribution is the distribution that

maximizes the entropy

1.5.1 The Boltzmann Entropy S in Statistical Mechan-

ics

In statistical mechanics, the Boltzmann entropy, denoted by S, is

a fundamental concept that connects the microscopic details of a

system to its macroscopic thermodynamic properties, particularly

its disorder or randomness.

- Define entropy in terms of probability:

Entropy S is a measure of the uncertainty or randomness of a system.

It can be defined in terms of the probabilities pi of the microstates

as

S = −k
∑

i Pi lnPi,
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where the sum is taken over all possible microstates. This is the

general form of the entropy in information theory and statistical

mechanics.

- Substitute the probability for equally likely microstates:

For a system where all microstates are equally likely, Pi =
1
Ω for all i

corresponding to the macrostate. (Hence, this does not follow Boltz-

mann distribution.) Then the entropy becomes:

S = −k
∑
i

1

Ω
ln

(
1

Ω

)
(1)

= −k × Ω× 1

Ω
ln

(
1

Ω

)
(2)

= k ln Ω (3)

The probability of a system being in a particular macrostate is

directly proportional to the number of microstates that correspond

to that macrostate. A macrostate with more microstates is more

probable and thus has higher entropy. Some examples are:

- Coin Toss:

Consider tossing a coin multiple times. The most probable outcome

is a roughly equal number of heads and tails, as this macrostate

corresponds to the largest number of microstates (combinations of

heads and tails).

- Gas Expansion:

When a gas expands into a larger volume, the number of possible
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positions for the gas molecules increases dramatically, leading to a

greater number of microstates and a higher entropy.

1.5.2 The Boltzmann constant (k)

- The Boltzmann constant (k) is a universal physical constant, mean-

ing its value is the same for all substances and does not change de-

pending on the type of gas or material being considered.

- It relates the average (linear) kinetic energy of particles in a gas

to the temperature of the gas, as in the equation Ek = 3
2kT . This

relationship holds true for all ideal gases and is a cornerstone of the

kinetic theory of gases.

- It relates the average (linear) kinetic energy of particles in a system

to the absolute temperature, acting as a conversion factor between

these two quantities.

- It is based on the principles of statistical mechanics, which assume

that the microscopic behavior of particles is governed by certain fun-

damental laws that are independent of the specific type of particle

or gas.
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1.6 Speed versus velocity dependence

In the case of an ideal gas, the Maxwell-Boltzmann distribution does

not depend on the direction of the particle velocity in a strict sense,

but the full description of the distribution does consider the velocity

direction in a way. The details are as follows:

1.6.1 Speed Distribution

- The Maxwell-Boltzmann speed distribution function

f (v) = 4π
(

m
2πkT

)3
2 v2e−

mv2

2kT depends only on the magnitude of the

velocity, that is, the speed v. It gives the probability distribution of

particles that have a particular speed regardless of the direction in

which the particles are moving. This is because in an ideal gas in

thermal equilibrium, the gas is isotropic, meaning that on average

there is no preferred direction of motion. The distribution is spheri-

cally symmetric in velocity space, and all directions are equally likely

for a particle to move in.

1.6.2 Velocity Distribution Consideration

- When considering the full velocity distribution (not just speed),

the direction is implicitly taken into account. In three - dimen-

sional space, the velocity of a particle is a vector v⃗ = (vx, vy, vz).

The probability density function in velocity space f (vx, vy, vz) =
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(
m

2πkT

)3
2 e−

m(v2x+v2y+v2z )

2kT shows that the probability depends on the com-

ponents of the velocity vector. However, when we integrate this

function over all possible directions (using spherical coordinates and

integrating over the angular variables), we get the speed distribution

function that is independent of direction. So, while the basic form

of the Maxwell-Boltzmann distribution is often presented in terms

of speed and is direction independent in that sense, the underly-

ing velocity distribution in three-dimensional space does account for

direction in the way the velocities are decomposed into components.
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1.7 The three characteristic Velocities and Speeds

In addition to the average speed and the most probable speed, the

root-mean-square velocity can also be derived from the Maxwell-

Boltzmann distribution. We note that “velocity” implies direction,

while “speed” only refers to magnitude.

Below is a detailed explanation of how to obtain these three ve-

locities or speeds, associated with the translational kinetic energies

of the ideal gas molecules.

The Maxwell-Boltzmann speed distribution function is given by:

f (v) = 4π
( m

2πkT

)3
2
e−

mv2

2kT v2

where m is the mass of a gas molecule, k is the Boltzmann con-

stant, T is the absolute temperature, and v is the speed of the

molecule.

1.7.1 Average speed(⟨v⟩)

The average velocity vector of gas molecules in thermal equilibrium

is zero due to the randomness of their motion. The average speed is

given by:

⟨v⟩ =
∫ ∞

0

v · f (v)dv
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Substituting the Maxwell-Boltzmann distribution function f (v)

and performing the integration, we get

⟨v⟩ =
√

8kT

πm

1.7.2 Most Probable Speed (vp)

The most probable speed is the speed at which the distribution func-

tion f (v) has a maximum. To find it, we take the derivative of f (v)

with respect to v, set it equal to zero, and solve for v.

Differentiating f (v) and setting df(v)
dv = 0, we get

vp =

√
2kT

m

1.7.3 Root-Mean-Square Velocity (vrms)

The correct term is “root-mean-square velocity” (or RMS velocity),

as it refers to the square root of the average of the squared velocities,

which is a measure of speed with a direction component, making it

a velocity rather than just a speed.

The root-mean-square velocity is defined as:

vrms =
√
⟨v2⟩

where ⟨v2⟩ =
∫∞
0 v2 · f (v)dv
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Substituting f (v) and performing the integration, we get

⟨v2⟩ = 3kT

m
So,

vrms =

√
3kT

m

We note that this is the relationship between the root-mean-

square velocity and the average translational kinetic energy per molecule

of an ideal gas is ⟨E⟩ = 1
2mv2rms, in the three-dimensional case with

v2 =
√

v2x + v2y + v2z .

In the case of one-dimensional linear motion,

1

2
m⟨v2x⟩ =

1

2
kT,

which is expected based on the Equipartition Theorem in thermody-

namics.

The Equipartition Theorem states that each quadratic degree of

freedom in a thermal equilibrium system contributes, on average,
1
2kT to the total internal energy of the system.

1.7.4 Summary

In summary, for gas molecules described by the Maxwell-Boltzmann

distribution, the three characteristic velocities or speeds are:
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- The average speed: ⟨v⟩ =
√

8kT
πm

- The most probable speed: vp =
√

2kT
m

- The root-mean-square velocity: vrms =
√

3kT
m

And the relationship among them is vp < ⟨v⟩ < vrms.
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2 Equipartition Theorem

2.1 Statement

The Equipartition Theorem in thermodynamics can be derived from

statistical mechanics based on the canonical ensemble:

1. Consider a system of N particles in thermal equilibrium with

a heat bath at temperature T .

- The Hamiltonian of the system H is a function of the positions qi
and momenta pi of the particles, H = H({qi}, {pi}).
- The partition function Z is given by Z =

∫
e−βH({qi},{pi})dΓ, where

β = 1
kT , k is the Boltzmann constant, and dΓ =

∏N
i=1 dqidpi is the

phase space volume element.

2. - The average energy ⟨E⟩ of the system is given by ⟨E⟩ =

−∂ lnZ
∂β

3. For every quadratic degree of freedom in the Hamiltonian of

the system H , the average energy contribution is 1
2kT .

4. Generalize to multiple degrees of freedom - If the Hamiltonian

has f quadratic degrees of freedom, H =
∑f

i=1
1
2aix

2
i + H ′′, where

xi can be either momenta or coordinates and ai are constants, the

average energy is ⟨E⟩ = f
2kT

This is the Equipartition Theorem, which states that each quadratic

degree of freedom in a thermal equilibrium system contributes, on

average, 1
2kT to the total internal energy of the system.
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2.2 Example: One-dimensional Harmonic Os-
cillator

The Hamiltonian of a one-dimensional harmonic oscillator is a key

concept in both classical and quantum mechanics. Here is an expla-

nation for each case:

2.2.1 Classical Mechanics

In classical mechanics, the Hamiltonian H of a one-dimensional har-

monic oscillator is the sum of its kinetic energy K and potential

energy U .

- The kinetic energy of a particle of mass m moving with momentum

p is given by K = p2

2m.

- The potential energy of a harmonic oscillator is U = 1
2kx

2, where k

is the force constant and x is the displacement from the equilibrium

position.

The Hamiltonian H is then: H = p2

2m + 1
2kx

2

Using the relation ω =
√

k
m, where ω is the angular frequency,

we can rewrite the Hamiltonian as: H = p2

2m + 1
2mω2x2

2.2.2 Quantum Mechanics

In quantum mechanics, the Hamiltonian is an operator. For a one -

dimensional harmonic oscillator, we replace the classical momentum
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p and position x with their corresponding operators.

- The momentum operator is p̂ = −ih̄ ∂
∂x, where h̄ is the reduced

Planck’s constant.

- The position operator is x̂ = x (in the position representation)

The Hamiltonian operator Ĥ is then: Ĥ = p̂2

2m + 1
2mω2x̂2

Substituting the momentum operator, we get: Ĥ = − h̄2

2m
∂2

∂x2
+

1
2mω2x2

The eigenvalues of the Hamiltonian operator Ĥ give the allowed

energy levels of the quantum harmonic oscillator, which are En =(
n + 1

2

)
h̄ω, where n = 0, 1, 2, · · · is the quantum number.

2.2.3 Equipartition Theorem and average energy

The Equipartition Theorem states that each quadratic degree of free-

dom in a thermal equilibrium system contributes, on average, 1
2kT

to the total internal energy of the system.

Since there are two quadratic degrees of freedom, one for kinetic

energy and another for vibration energy, the average energy of the

one-dimensional harmonic oscillator is 2× 1
2kT = kT .
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