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The Second Law of Thermodynamics

• In this chapter, we examine heat engines in theory and in 
practice.

• Their operation is governed by the Second Law of 
Thermodynamics—one of the most far-reaching and 
powerful statements in all of science.

• There are several different ways to express this law, 
including one involving a concept called entropy.

• The ideas discussed in this chapter have applications to 
practically all areas of science, including information 
processing, biology, and astronomy.
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Reversible and Irreversible Processes 1

• If you pour hot water into a glass and place that glass on a 
table, the water will slowly cool until it reaches the 
temperature of its surroundings.

• The air in the room will also warm.

• You would be astonished if, instead, the water got warmer 
and the air in the room cooled down slightly, while 
conserving energy.

• The First Law of Thermodynamics is satisfied for both 
scenarios.

• It is always the case that the water cools until it reaches the 
temperature of its surroundings.

• Other physical principles are required to explain why the 
temperature changes one way and not the other.
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Reversible and Irreversible Processes 2

• Practically all real-life thermodynamic 
processes are irreversible.

• For example, if a disk of ice at a 
temperature of 0 °C is placed in a metal 
can having a temperature of 40 °C, heat 
flows irreversibly from the can to the 
ice.

• The ice will melt to water; the water 
will then warm, and the can will cool, 
until the water and the can are at the 
same temperature.

• It is not possible to make small changes 
in any thermodynamic variable and 
return the system to the state 
corresponding to a warm can and 
frozen water.

Access the text alternative for these images
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Reversible and Irreversible Processes 3

• We can imagine a class of idealized reversible processes.

• With a reversible process, a system is always close to being in 
thermodynamic equilibrium.

• Making a small change in the state of the system can reverse any 
change in the thermodynamic variables of the system.

• For example, a disk of ice at a temperature of 0 °C is placed in a 
metal can that is also at a temperature of 0 °C.

• Raising the temperature of the can slightly will melt the ice to water.

• Then, lowering the temperature of the metal can will refreeze the 
water to ice, thus returning the system to its original state.

Access the text alternative for these images
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Reversible and Irreversible Processes 4

• We can think of reversible processes as equilibrium 
processes in which the system always stays in, or close to, 
thermal equilibrium.

• If a system were in thermal equilibrium, no heat would flow, 
and no work would be done by the system.

• Thus, a reversible process is an idealization. However, for a 
nearly reversible process, small temperature and pressure 
adjustments can keep a system close to thermal equilibrium.

• On the other hand, if a process involves heat flow with a 
finite temperature difference free expansion of a gas, or 
conversion of mechanical work to thermal energy, it is an 
irreversible process.
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Reversible and Irreversible Processes 5

• It is not possible to make small changes to the temperature or 
pressure of the system and cause the process to proceed in the 
opposite direction.

• In addition, while an irreversible process is taking place, the 
system is not in thermal equilibrium.

• The irreversibility of a process is related to the randomness or 
disorder of the system.

• For example, suppose you order a deck of cards by rank and suit 
and then take the first five cards:

8



© McGraw Hill, LLC

Reversible and Irreversible Processes 6

• Next, you put those five cards back in the deck, toss the deck 
of cards in the air, and let the cards fall on the floor.

• You pick up the cards one by one without looking at their 
rank or suit and then take the first five cards off the top of the 
deck.

• It is highly improbable that these five cards will be ordered by 
rank and suit.

• It is much more likely that you will see a result like:
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Poincaré Recurrence Time

• Have you ever experienced déjà vu?

• If processes leading from one event to another are truly 
irreversible, then an event cannot repeat exactly.

• The French mathematician and physicist Henry Poincaré made 
an important contribution to this discussion in 1890, by 
famously stating his recurrence theorem.

• In it he postulates that certain isolated dynamical systems will 
return to a state arbitrarily close to their initial state after a 
sufficiently long time.

• This time is known as the Poincaré recurrence time, or simply 
the Poincaré time, of the system.

• This time can be calculated straightforwardly for many systems 
that have only a finite number of different states, as the 
following example illustrates.
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Deck of Cards 1

• Suppose you repeat the tossing and gathering of a deck of 
cards again and again.

• Eventually, there is a chance that one of the random orders in 
which you pick up the cards will yield the sequence ace 
through ten of spades for the first five cards in the deck.

PROBLEM:

• If it takes 1 min on average to toss the cards into the air and 
then collect them into a stack again, how long can you expect 
it to take, on average, before you will find the sequence of ace 
through ten of spades as the first five cards in the deck?

SOLUTION:

• There are 52 cards in the deck.
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Deck of Cards 2

12

• Each of them has the same 1/52 probability of being on top.

• So, the probability that the ace of spades ends up on top is 1/52.

• If the ace is the top card, then there are 51 cards left.

• The probability that the king of spades is in the top position of 
the remaining 51 cards is 1/51.

• The combined probability that the ace and king of spades are 
the top two cards in that order is 1/(52·51) = 1/2652.

• In the same way, the probability of the ordered sequence of ace 
through ten of spades occurring is 1/(52·51·50·49·48) = 
1/311,875,200.

• So, the average number of tries needed to obtain the desired 
sequence is 311,875,200.
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Deck of Cards 3

13

• Since each of them takes 1 min, successful completion of this 
exercise would take approximately 593 yr (24/7).
DISCUSSION:

• We can almost immediately state the average number of tries it 
would take to get all 52 cards in the ordered sequence ace 
through two, for all four suits.

• It is 52·51·50· … ·3·2·1 = 52!
• If each of these attempts took a minute, it would require an 

average of 1.534·1062 yr to obtain the desired order.
• But even after this time, there would be no guarantee that the 

ordered sequence had to appear.
• However, since there are 52! possible different sequences of 

the cards in the deck, at least one of the sequences would have 
appeared at least twice.
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Engines and Refrigerators 1

• A heat engine is a device that turns thermal energy into 
useful work.

• For example, an internal combustion engine or a jet engine 
extracts mechanical work from the thermal energy 
generated by burning a gasoline-air mixture.

• For a heat engine to do work repeatedly, it must operate in  a 
cycle.

• For example, work would be done if you put a firecracker 
under a soup can and exploded the firecracker.

• The thermal energy from the explosion would be turned into 
mechanical motion of the soup can.

• However, the applications of this firecracker/soup-can 
engine are limited.
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Engines and Refrigerators 2

• An engine that operates in a cycle passes through various 
thermodynamic states and returns to its original state.

• The cyclic processes that heat engines utilize always involve some 
kind of temperature change.

• We can think of the most basic heat engine as operating between 
two thermal reservoirs:

a: Monty Rakusen/Getty Images

Access the text alternative for these images
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Engines and Refrigerators 3

16

• The engine takes heat, QH, from the high-temperature 
reservoir, turns some of that heat into mechanical work, W, 
and exhausts the remaining heat, QL (where QL > 0), to the 
low-temperature reservoir.

• According to the First Law of Thermodynamics (equivalent to 
the conservation of energy), QH = W + QL .

• Thus, to make an engine operate, it must be supplied energy in 
the form of QH, and then it will return useful work, W.

• The efficiency, ε, of an engine is defined as:

𝜀 =
𝑊

𝑄H
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Engines and Refrigerators 4

• A refrigerator is a heat engine that operates in reverse.

a: C Squared Studios/Photodisc/Getty Images

• The refrigerator uses work to move heat from a low-
temperature to a high-temperature thermal reservoir.

• In a real refrigerator, an electric motor drives a compressor, 
which transfers thermal energy from the interior of the 
refrigerator to the air in the room.

Access the text alternative for these images
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Concept Check 1

• A refrigerator operates by

A. doing work to move heat from a low-temperature thermal 
reservoir to a high-temperature thermal reservoir.

B. doing work to move heat from a high-temperature thermal 
reservoir to a low-temperature thermal reservoir.

C. using thermal energy to produce useful work.

D. moving heat from a low-temperature thermal reservoir to 
a high-temperature thermal reservoir without doing work.

E. moving heat from a high-temperature thermal reservoir to 
a low-temperature thermal reservoir without doing work.

18
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Solution Concept Check 1

• A refrigerator operates by

A. doing work to move heat from a low-temperature thermal 
reservoir to a high-temperature thermal reservoir.

B. doing work to move heat from a high-temperature thermal 
reservoir to a low-temperature thermal reservoir.

C. using thermal energy to produce useful work.

D. moving heat from a low-temperature thermal reservoir to 
a high-temperature thermal reservoir without doing work.

E. moving heat from a high-temperature thermal reservoir to 
a low-temperature thermal reservoir without doing work.
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Engines and Refrigerators 5

20

• For a refrigerator, the First Law of Thermodynamics requires 
that QL + W = QH.

• It is desired that a refrigerator remove as much heat as possible 
from the cooler reservoir, QL , given the work, W, put into the 
refrigerator.

• The coefficient of performance, K, of a refrigerator is:

• In the United States, refrigerators are usually rated by their 
annual energy usage, without quoting their actual efficiency.

• An efficient refrigerator is one whose energy use is comparable 
to the lowest energy use in its capacity class.

𝐾 =
𝑄L
𝑊
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Engines and Refrigerators 6

• Air conditioners are often rated in terms of an energy 
efficiency rating (EER), defined as the heat removal capacity, 
H, in BTU/hour divided by the power P used in watts.

• The relationship between K and EER is:

• The factor 1/3.41 arises from the definition of a BTU per 
hour:

21

𝐾 =
𝑄L
𝑊

=
𝐻𝑡

𝑃𝑡
=
𝐻

𝑃
=
EER

3.41

1 BTU/h

1 watt
=

1055 J / 3600 s

1 J/s
=

1

3.41
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Engines and Refrigerators 7

• Typical EER values for a room air conditioner range from   8 
to 11, meaning that values of K range from 2.3 to 3.2.

• Thus, a typical room air conditioner can remove about   three 
units of heat for every unit of energy used.

• Central air conditioners are often rated by a seasonally 
adjusted energy efficiency rating (SEER) that considers how 
long the air conditioner operates during a year.

• A heat pump is a variation of a refrigerator that can be  used 
to warm buildings.

• The heat pump warms the building by cooling the outside air.

• Just as for a refrigerator, 𝑄L +𝑊 = 𝑄H. 

22
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Engines and Refrigerators 8

23

• For a heat pump, the quantity of interest is the heat put into 
the warmer reservoir, QH, rather than the heat removed from 
the cooler reservoir.

• Thus, the coefficient of performance of a heat pump is:

• The typical coefficient of performance of a commercial heat 
pump ranges from 3 to 4.

• Heat pumps do not work well when the outside temperature 
goes below –18 °C (0 °F).

𝐾heat pump =
𝑄H
𝑊
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Concept Check 2

• Can a heat engine like the one shown in the figure operate?

A. yes

B. no

C. need to know the specific cycle used by the engine to 
answer

D. yes, but only with a monatomic gas

E. yes, but only with a diatomic gas
Access the text alternative for these images
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Solution Concept Check 2

• Can a heat engine like the one shown in the figure operate?

A. yes

B. no

C. need to know the specific cycle used by the engine to 
answer

D. yes, but only with a monatomic gas

E. yes, but only with a diatomic gas
Access the text alternative for these images
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Warming a House with a Heat Pump 1

• A heat pump with a coefficient of performance of 3.500 is 
used to warm a house that loses 75,000. BTU/h of heat on   a 
cold day.

• Assume that the cost of electricity is 10.00 cents per 
kilowatt-hour.

PROBLEM:

• How much does it cost to warm the house for the day?

SOLUTION:

• The coefficient of performance of a heat pump is:

26

𝐾heat pump =
𝑄H
𝑊
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Warming a House with a Heat Pump 2

• The work required to warm the house is then:

• The house is losing 75,000 BTU/h, which converts to:

• The power required to warm the house is:

• The cost to warm the house is:

27

𝑊 =
𝑄H

𝐾heat pump

75,000 BTU

1 h
=
1055 J

1 BTU

1 h

3600 s
= 21.98 kW

𝑃 =
𝑊

𝑡
=

𝑄H/𝑡

𝐾heat pump
=
21.98 kW

3.500
= 6.280 kW

Cost = 6.280 kW 24
$0.1000

1 kWh
= $15.07
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Ideal Engines

• An ideal engine is one that utilizes only reversible processes.

• Thus, the engine incorporates no “energy-wasting” effects, 
such as friction or viscosity.

• A heat engine is a device that turns thermal energy into useful 
work.

• You might think that an ideal engine would be 100% efficient.

• However, we’ll see that even the most efficient ideal engine 
cannot accomplish this.

• This fundamental inability to convert thermal energy totally 
into useful mechanical work lies at the very heart of the 
Second Law of Thermodynamics and of entropy, the two main 
topics of this chapter.

28



© McGraw Hill, LLC

Concept Check 3

• An ideal heat engine is one that

A. uses only reversible processes.

B. uses only irreversible processes.

C. has an efficiency of 100%.

D. has an efficiency of 50%.

E. does no work.

29
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Solution Concept Check 3

• An ideal heat engine is one that

A. uses only reversible processes.

B. uses only irreversible processes.

C. has an efficiency of 100%.

D. has an efficiency of 50%.

E. does no work.

30
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Carnot Cycle 1

• An example of an ideal engine is the Carnot engine, which is the 
most efficient engine that operates between two temperature 
reservoirs and the only one to do so reversibly.

• The cycle of thermodynamic processes used by the Carnot engine 
is called the Carnot cycle.

• To be reversible, a Carnot cycle 
consists of two isothermal 
processes and two adiabatic 
processes.

• We can pick an arbitrary starting 
point for the cycle.

• Let’s say that it begins at point 1.

Access the text alternative for these images

31



© McGraw Hill, LLC

Carnot Cycle 2

Access the text alternative for these images

32

• The system first undergoes an isothermal process, during 
which the system expands and absorbs heat from a thermal 
reservoir at fixed temperature TH.

• At point 2, the system begins an adiabatic expansion.

• At point 3, the system begins another isothermal process, this 
time giving up heat to a second
thermal reservoir at a lower
temperature, TL.

• At point 4, the system begins a
second adiabatic process.

• The Carnot cycle is complete when
the system returns to point 1.
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Carnot Cycle 3

• The efficiency of the Carnot engine is not 100% but instead 
is given by:

• Remarkably, the efficiency of a 
Carnot engine depends only on the 
temperature ratio of the two 
thermal reservoirs (Deriv. 20.1).

• For the engine shown, the 
efficiency is
ε = 1 − (300 K)/(400 K) = 0.25.

Access the text alternative for these images
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𝜀 = 1 −
𝑇L
𝑇H
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Carnot Cycle 4

34

• Can the efficiency of the Carnot engine reach 100%?

• To obtain 100% efficiency, TH would have to be raised to 
infinity or TL be lowered to absolute zero.

• Neither option is possible.

• The efficiency of a Carnot engine is always less than 100%.

• The total mechanical work from a Carnot cycle can be written 
as:

• Since ε = W/QH, the efficiency of a Carnot engine is:

𝑊 = 𝑄H − 𝑄L

𝜀 =
𝑄H − 𝑈L
𝑄H
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Carnot Cycle 5

• The efficiency of a Carnot engine is determined by the heat 
taken from the warmer reservoir minus the heat given back 
to the cooler reservoir.

• For this expression for the efficiency of a Carnot engine to 
yield an efficiency of 100%, the heat returned to the cooler 
reservoir would have to be zero.

• Conversely, if the efficiency of the Carnot engine is less than 
100%, the engine cannot convert all the heat it takes in from 
the warmer reservoir to useful work.

• French physicist Nicolas Leonard Sadi Carnot (1796 to 
1832), who developed the Carnot cycle in the 19th century, 
proved the following statement, known as Carnot’s 
Theorem.

35
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Carnot Cycle 6

• Carnot’s Theorem:

No heat engine operating between two thermal 
reservoirs can be more efficient than a Carnot engine 
operating between the two thermal reservoirs.

• We can imagine running a Carnot engine in reverse, creating 
a “Carnot refrigerator.”

• The maximum coefficient of performance for such a 
refrigerator operating between two thermal reservoirs is:

36

𝐾max =
𝑇L

𝑇H − 𝑇L
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Carnot Cycle 7

• Similarly, the maximum coefficient of performance for a heat 
pump operating between two thermal reservoirs is:

• Note that the Carnot cycle constitutes the ideal 
thermodynamic process, which is the absolute upper limit on 
what is theoretically attainable.

• Real-world complications lower the efficiency drastically, as 
we’ll see.

• The typical coefficient of performance for a real refrigerator 
or heat pump is around 3.

37

𝐾heat pumpmax =
𝑇H

𝑇H − 𝑇L
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Concept Check 4

• What is the maximum (Carnot) coefficient of performance of 
a refrigerator in a room with a temperature of 22.0 °C ?

• The temperature inside the refrigerator is kept at 2.0 °C.

A. 0.10

B. 0.44

C. 3.0

D. 5.8

E. 13.8

38
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Solution Concept Check 4

• What is the maximum (Carnot) coefficient of performance of 
a refrigerator in a room with a temperature of 22.0 °C ?

• The temperature inside the refrigerator is kept at 2.0 °C.

A. 0.10

B. 0.44

C. 3.0

D. 5.8

E. 13.8

39

𝐾max =
𝑇L

𝑇H − 𝑇L

𝐾max =
273 K + 2.0 K

273 K + 22.0 K − 273 K + 2.0 K

𝐾max = 13.8
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Concept Check 5

• What is the maximum (Carnot) coefficient of performance of 
a heat pump being used warm a house to an interior of 
temperature of 22.0 °C ?

• The temperature outside the house is 2.0 °C.

A. 0.15

B. 1.1

C. 3.5

D. 6.5

E. 14.8

40
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Solution Concept Check 5

• What is the maximum (Carnot) coefficient of performance of 
a heat pump being used warm a house to an interior of 
temperature of 22.0 °C ?

• The temperature outside the house is 2.0 °C.

A. 0.15

B. 1.1

C. 3.5

D. 6.5

E. 14.8

41

𝐾max =
𝑇H

𝑇H − 𝑇L

𝐾max =
273 K + 22.0 K

273 K + 22.0 K − 273 K + 2.0 K

𝐾max = 14.8
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Work Done by a Carnot Engine 1

42

• A Carnot engine takes 3000 J of heat from a thermal reservoir 
with a temperature TH = 500 K and discards heat to a thermal 
reservoir with a temperature TL = 325 K.

PROBLEM:

• How much work does the Carnot engine do in this process

SOLUTION:

• Start with the definition of the efficiency of a heat engine:

• The efficiency of a Carnot engine is:

𝜀 =
𝑊

𝑄H

𝜀 = 1 −
𝑇L
𝑇H
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Work Done by a Carnot Engine 2

• Combining these two equations gives us:

• The work done by the Carnot engine is:

• Putting in our numerical values gives us:

43

𝑊

𝑄H
= 1 −

𝑇L
𝑇H

𝑊 = 𝑄H 1 −
𝑇L
𝑇H

𝑊 = 3000 J 1 −
325 K

500 K
= 1050 J
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Maximum Efficiency of an Electric Power Plant 1

• Electricity can be generated by burning fossil fuels to 
produce steam, which in turn drives alternators that produce 
electricity.

• Power plants can produce steam with a temperature as high 
as 600. °C by pressurizing the steam.

• The resulting waste heat must be exhausted into the 
environment, which is at a temperature of 20.0 °C.

PROBLEM:

• What is the maximum efficiency of the power plant?

SOLUTION:

• The maximum efficiency of such a power plant is the 
efficiency of a Carnot heat engine.
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Maximum Efficiency of an Electric Power Plant 2

• For a Carnot engine operating between 20.0 °C and 600. °C:

• Real power plants achieve a lower efficiency of around 40%.

• Many well-designed plants do not simply exhaust the waste 
heat into the environment.

• They employ cogeneration or combined heat and power 
(CHP).

• The heat that normally would be lost is used to heat nearby 
buildings or houses.

• This heat can even be used to operate air conditioners that 
cool nearby structures, a process called trigeneration.

45

𝜀 = 1 −
𝑇L
𝑇H

= 1 −
293 K

873 K
− 66.4%



© McGraw Hill, LLC

Cost to Operate an Electric Power Plant 1

• An electric power plant operates steam turbines at a 
temperature of 557 °C and uses cooling towers to keep the 
cooler thermal reservoir at a temperature of 38.3 °C.

• The operating cost of the plant for 1 yr is $52.0 million.

• The managers propose using the water from a nearby lake  
to lower the temperature of the cooler reservoir to 8.90 °C.

• Assume that the plant operates at maximum possible 
efficiency.

PROBLEM:

• How much will the operating cost of the plant be reduced in 
1 yr because of the change in reservoir temperature?

• Assume that the plant generates the same amount of 
electricity.
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Cost to Operate an Electric Power Plant 2

SOLUTION:

Think

• We can calculate the efficiency of the power plant if it 
operates at the theoretical Carnot efficiency, which depends 
only on the temperatures of the warmer thermal reservoir 
and the cooler thermal reservoir.

• We can calculate the amount of thermal energy put into the 
warmer reservoir and assume that the cost of operating the 
plant is proportional to that thermal energy.

• This thermal energy might come from the burning of fuel 
(coal, oil, or gas) or perhaps from a nuclear reactor.

47
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Cost to Operate an Electric Power Plant 3

• Lowering the temperature of the cooler reservoir will 
increase the efficiency of the power plant and lower the 
required amount of thermal energy and the associated cost.

• The cost savings are then the operating cost of the original 
plant minus the operating cost of the improved plant.

Sketch

Access the text alternative for these images
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Cost to Operate an Electric Power Plant 4

Research
• The maximum efficiency of the power plant when operating 

with the cooling towers is given by the Carnot efficiency:

• The efficiency of the power plant under this condition can 
also be expressed as:

• When the lake is used, we have:

49

𝜀1 =
𝑇H − 𝑇L1

𝑇H

𝜀1 =
𝑊

𝑄H1

𝜀2 =
𝑇H − 𝑇L2

𝑇H
and 𝜀2 =

𝑊

𝑄H2
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Cost to Operate an Electric Power Plant 5

50

• The cost to operate the power plant is proportional to the 
thermal energy supplied to the warmer reservoir.

• We can thus equate the ratio of the original cost, c1, to the 
lowered cost, c2, with the ratio of the thermal energy 
originally required, QH1, to the thermal energy subsequently 
required, QH2:

Simplify
• The new cost is:

𝑐1
𝑐2

=
𝑄H1
𝑄H2

𝑐2 = 𝑐1
𝑄H2
𝑄H1
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Cost to Operate an Electric Power Plant 6

• Putting our first two equations together gives us the thermal 
energy originally required:

• The thermal energy required using the lake is:

51

𝑄H1 =
𝑊

𝜀1
=

𝑊

𝑇H − 𝑇L1
𝑇H

=
𝑇H𝑊

𝑇H − 𝑇L1

𝑄H1 =
𝑊

𝜀2
=

𝑊

𝑇H − 𝑇L2
𝑇H

=
𝑇H𝑊

𝑇H − 𝑇L2
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Cost to Operate an Electric Power Plant 7

• The new cost is:

• The work done by the power plant cancels out because the 
plant generates the same amount of electricity in both cases.

• The cost savings are:
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𝑐2 = 𝑐1
𝑄H2
𝑄H1

= 𝑐1

𝑇H𝑊
𝑇H − 𝑇L2
𝑇H𝑊

𝑇H − 𝑇L1

= 𝑐1
𝑇H − 𝑇L1
𝑇H − 𝑇L2

𝑐1 − 𝑐2 = 𝑐1 − 𝑐1
𝑇H − 𝑇L1
𝑇H − 𝑇L2

= 𝑐1 1 −
𝑇H − 𝑇L1
𝑇H − 𝑇L2

= 𝑐1
𝑇L1 − 𝑇L2
𝑇H − 𝑇L2
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Cost to Operate an Electric Power Plant 8

Calculate

• Putting in our numerical values:

Round

• We report our result to three significant figures:

Double-check

• To double-check our result, we calculate the efficiency of the 
power plant using cooling towers and using the lake.
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𝑐1 − 𝑐2 = 𝑐1
𝑇L1 − 𝑇L2
𝑇H − 𝑇L2

= $52.0 million
311.45 K − 282.05 K

830.15 K − 282.05 K

𝑐1 − 𝑐2 = $2.78927 million

𝑐1 − 𝑐2 = $2.79 million
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Cost to Operate an Electric Power Plant 9

• Using the cooling towers we get:

• Using the lake we get:

• Using the lake provides higher efficiency, which seems 
reasonable.

• To check further, we verify that the ratio of the two 
efficiencies is equal to the inverse of the ratio of the two 
costs, because a higher efficiency means a lower cost.
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𝜀1 =
𝑇H − 𝑇L1

𝑇H
=
830.15 K − 311.4 K

830.15 K
= 62.5%

𝜀2 =
𝑇H − 𝑇L2

𝑇H
=
830.15 K − 282.05 K

830.15 K
= 66.0%
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Cost to Operate an Electric Power Plant 10

• The ratio of the two efficiencies is:

• The inverse ratio of the two costs is:

• These ratios agree with rounding errors, so our result seems 
reasonable.
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𝜀1
𝜀2

=
62.5%

66.7%
= 0.947

𝑐2
𝑐1

=
$52 million − $2.79 million

$52 million
= 0.946



© McGraw Hill, LLC

Otto Cycle 1

• A real heat engine based on the Carnot cycle is not practical.

• However, many practical heat engines that are in everyday 
use are designed to operate via cyclical thermodynamic 
processes.

• For an example of the operation of a real-world engine, let’s 
examine the Otto cycle.

• Again, we assume an ideal gas as the working medium.

• The Otto cycle is used in the modern internal combustion 
engines inside automobiles.

• This cycle consists of two adiabatic processes and two 
constant-volume processes and is the default configuration 
for a four-cycle internal combustion engine.
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Otto Cycle 2

Isochoric

Adiabatic

Adiabatic

Isochoric

Access the text alternative for these images
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Otto Cycle 3

• Intake stroke: 0 to 1

• Intake valve closes at 1

• Compression stroke: 1 to 2

• Fuel-air ignition: 2 to 3

• Power stroke: 3 to 4

• Exhaust valve opens at 4; 4 to 1

• Exhaust stroke: 1 to 0

Access the text alternative for these images
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Otto Cycle 4

59

• The ratio of the expanded volume, V1, to the compressed 
volume, V2 , is called the compression ratio:

• The efficiency of the Otto cycle can be expressed as a function of 
the compression ratio only (Deriv. 20.2):

• Here are two examples:

• In contrast, for the Carnot cycle, the efficiency depends only on 
the ratio of two temperatures.

𝑟 =
𝑉1
𝑉2

𝜀 = 1 − 𝑟1−𝛾

𝑟 = 10.7 ⇒ 𝜀 = 61.3% 𝑟 = 9.50 ⇒ 𝜀 = 59.4%
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Otto Cycle 5

• Note, however, that this is the theoretical upper limit for the 
efficiency at this compression ratio.

• In principle, an internal combustion engine can be made 
more efficient by increasing the compression ratio, but 
practical factors prevent that approach.

• For example, if the compression ratio is too high, the fuel-air 
mixture will detonate before the compression is complete.

• Very high compression ratios put high stresses on the 
components of the engine.

• The actual compression ratios of gasoline-powered internal 
combustion engines range from 8 to 12.
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Real Otto Engines

• The actual efficiency of an internal combustion engine is 
about 20%.

• Why is this so much lower than the theoretical upper limit?

• First, the “adiabatic” parts of the cycle do not really proceed 
without heat exchange between the gas in the piston and the 
engine block.

• Second, the gasoline-air mixture is not quite an ideal gas.

• Third, during the ignition and heat rejection processes, the 
volume does not stay exactly constant, because both 
processes take some time.

• Fourth, during the intake and exhaust strokes, the pressure 
in the chamber is not exactly atmospheric pressure because 
of gas dynamics considerations.
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• Which of the four temperatures in the Otto cycle is the highest?

A. T1

B. T2

C. T3

D. T4

E. All four are identical.

Concept Check 6

Access the text alternative for these images
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𝑇3

𝑇2

𝑇4

𝑇1
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• Which of the four temperatures in the Otto cycle is the highest?

A. T1

B. T2

C. T3

D. T4

E. All four are identical.

Solution Concept Check 6

Access the text alternative for these images
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Efficiency of an Automobile Engine 1

• A car with a gasoline-powered internal combustion engine 
travels with a speed of 26.8 m/s (60.0 mph) on a level road 
and uses gas at a rate of 6.92 L/100 km (34.0 mpg).

• The energy content of gasoline is 34.8 MJ/L.

PROBLEM:

• If the engine has an efficiency of 20.0%, how much power is 
delivered to keep the car moving at a constant speed?

SOLUTION:

Think

• We can calculate how much energy is being supplied to the 
engine by calculating the amount of fuel used and 
multiplying by the energy content of that fuel.
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Efficiency of an Automobile Engine 2

• The efficiency is the useful work divided by the energy being 
supplied.

• Once we determine the energy supplied, we can find the 
useful work from the given efficiency of the engine.

• By dividing the work and the energy by an arbitrary time 
interval, we can determine the average power delivered.

Sketch

W. Bauer and G. D. Westfall

Access the text alternative for these images
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Efficiency of an Automobile Engine 3

66

Research

• The car is traveling at speed v.

• The rate at which the car burns gasoline can be expressed in 
terms of the volume of gasoline burned per unit distance.

• We can calculate the volume of gasoline burned per unit time, 
Vt, by multiplying the speed of the car by the rate at which the 
car burns gasoline:

• The energy per unit time supplied to the engine by consuming 
fuel is the power, P, given by the volume of gasoline used per 
unit time multiplied by the energy content of gasoline, Eg:

𝑉t = 𝜒𝑣

𝑃 = 𝑉t𝐸g
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Efficiency of an Automobile Engine 4

67

• The efficiency of the engine is given by:

• Here W is the useful work and QH is the thermal energy 
supplied to the engine.

• If we divide both W and QH by a time interval, t, we get:

Simplify

• Combining our equations gives us:

𝜀 =
𝑊

𝑄H

𝜀 =
𝑊/𝑡

𝑄H/𝑡
=
𝑃delivered

𝑃

𝑃delivered = 𝜀𝑃 = 𝜀𝑉t𝐸g = 𝜀𝜒𝑣𝐸g
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Efficiency of an Automobile Engine 5

Calculate
• The power delivered is:

Round
• We report our result to three significant figures:

Double-check
• To double-check our result, we calculate the power required 

to keep the car moving at 60.0 mph against air resistance.
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𝑃delivered = 𝜀𝜒𝑣𝐸g = 0.200
6.92 L

100 ∙ 103 m
26.3 m/s 34.8 ∙ 106 J/L

𝑃delivered = 12,907.7 W

𝑃delivered = 12.9 kW = 17.3 hp
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Efficiency of an Automobile Engine 6

69

• The power required, Pair, is equal to the product of the force of 
air resistance, Fdrag, and the speed of the car:

• The drag force created by air resistance is given by:

• The constant K has been found empirically to be:

• Here cd is the drag coefficient of the car, A is its front cross-
sectional area, and ρ is the density of air.

𝑃air = 𝐹drag𝑣

𝐹drag = 𝐾𝑣2

𝐾 =
1

2
𝑐d𝐴𝜌
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Efficiency of an Automobile Engine 7

70

• Combining our equations gives us:

• Using cd = 0.33, A = 2.2 m2, and ρ = 1.29 kg/m3, we get:

• The power required to overcome air resistance
(Pair = 9.0 kW = 12 hp) is about 70% of the calculated value 
for the power delivered (Pdelivered = 12.9 kW = 17.3 hp).

• The remaining power is used to overcome other kinds of 
friction, such as rolling friction.

• Thus, our answer seems reasonable.

𝑃air = 𝐹drag𝑣 = 𝐾𝑣2 𝑣 =
1

2
𝑐d𝐴𝜌𝑣

3

𝑃air =
1

2
0.33 2.2 m2 1.29 kg/m3 26.8 m/s 3 = 9014W = 9.0 kW
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Diesel Cycle 1

• Diesel engines and gasoline engines have somewhat different 
designs.

• Diesel engines do not compress a fuel-air mixture, but rather 
air only (path from point 1 to point 2, green curve).

• The fuel is introduced (between 
point 2 and point 3) only after 
the air has been compressed.

• The thermal energy from the 
compression ignites the mixture 
(thus, no spark plug is required).

• This combustion process pushes 
the piston out at constant 
pressure.

Access the text alternative for these images
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Diesel Cycle 2

• After combustion, the combustion products push the piston 
out farther in the same adiabatic manner as in the Otto cycle 
(path from point 3 to point 4, red curve).

• The process of heat rejection 
to the environment at constant 
volume (between points 4 and 
1 in the diagram) also 
proceeds in the same way as in 
the Otto cycle, as do the intake 
stroke (path from 0 to 1) and 
exhaust stroke (path from 1 to 
0).

Access the text alternative for these images
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Diesel Cycle 3

• Diesel engines have a higher compression ratio and thus a 
higher efficiency than gasoline-powered four-stroke engines, 
although they have a slightly different thermodynamic cycle.

• The efficiency of an ideal diesel engine is given by:

• Here α is the cut-off ratio between the final and initial 
volumes of the combustion phase.
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𝜀 = 1 − 𝑟1−𝛾
𝛼𝛾 − 1

𝛾 𝛼 − 1
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Concept Check 7

• In which part of the Diesel cycle is heat added?

A. on the path from point 0 to point 1

B. on the path from point 1 to point 2

C. on the path from point 2 to point 3

D. on the path from point 3 to point 4

E. on the path from point 4 to point 1

Access the text alternative for these images
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Solution Concept Check 7

• In which part of the Diesel cycle is heat added?

A. on the path from point 0 to point 1

B. on the path from point 1 to point 2

C. on the path from point 2 to point 3

D. on the path from point 3 to point 4

E. on the path from point 4 to point 1

Access the text alternative for these images
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Concept Check 8

• During which part(s) of the Diesel cycle is mechanical work 
done by the engine?

A. on the path from point 0 to point 1 
and on the path from point 1 to 
point 0

B. on the path from point 1 to point 2

C. on the path from point 2 to point 3 
and on the path from point 3 to 
point 4

D. on the path from point 4 to point 1

Access the text alternative for these images
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Solution Concept Check 8

• During which part(s) of the Diesel cycle is mechanical work 
done by the engine?

A. on the path from point 0 to point 1 
and on the path from point 1 to 
point 0

B. on the path from point 1 to point 2

C. on the path from point 2 to point 3 
and on the path from point 3 to 
point 4

D. on the path from point 4 to point 1

Access the text alternative for these images
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Hybrid Cars

• Hybrid cars combine a gasoline engine and an electric motor 
to achieve higher efficiency than a gasoline engine alone can 
achieve.

• The improvement in efficiency results from using a smaller 
gasoline engine than would normally be necessary and an 
electric motor, run off a battery charged by the gasoline 
engine, to supplement the gasoline engine when higher power 
is required.

• The Ford Escape Hybrid has a 
114-kW (153-hp) gasoline
engine coupled with a 70-kW 
(94-hp) electric motor, and the 
Ford Escape has a 128-kW 
(171-hp) gasoline engine.

Koichi Kamoshida/Stringer/Getty 
Images 
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Efficiency and the Energy Crisis 1

• The efficiencies of engines and refrigerators have important 
economic consequences, which are relevant to solving the 
energy crisis.

• The efficiencies and performance coefficients calculated in 
this chapter with the aid of thermodynamic principles are 
theoretical upper limits.

• Real-world complications reduce the actual efficiencies of 
engines and performance coefficients of refrigerators.

• Engineering research can overcome these real-world 
complications and provide better performance of real 
devices, approaching the ideal limits.

• One impressive example of performance improvement has 
occurred with refrigerators sold in the United States, 
according to data compiled by Steve Chu.
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Efficiency and the Energy Crisis 2

Access the text alternative for these images
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Efficiency and the Energy Crisis 3

81

• Between 1975 and 2003, the average size of a refrigerator in 
U.S. kitchens increased by about 20%, but through a 
combination of tougher energy standards and research and 
development on refrigerator design and technology, the 
average power consumption fell by two-thirds, a total of 1200 
kWh/yr, from 1800 kWh/yr in 1975 to 600 kWh/yr in 2003.

• Since about 150 million new refrigerators and freezers are 
purchased each year in the US, and each one saves 
approximately 1200 kWh/yr, a total energy savings of 180 
billion kWh (6.5·1017 J = 0.65 EJ) is realized each year.

• In 2009, this savings was approximately twice as much as the 
combined energy produced using wind power, solar energy, 
geothermal, and biomass.
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Freezing Water in a Refrigerator 1

• Suppose we have 250 g of water at 0.00 °C.

• We want to freeze this water by putting it in a refrigerator 
operating in a room with a temperature of 22.0 °C.

• The temperature inside the refrigerator is −5.00 °C.

PROBLEM:

• What is the minimum amount of electrical energy that must 
be supplied to the refrigerator to freeze the water?

SOLUTION:

Think

• The amount of heat that must be removed depends on the 
latent heat of fusion and the given mass of water.
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Freezing Water in a Refrigerator 2

• The most efficient refrigerator possible is a Carnot 
refrigerator, so we will use the theoretical maximum 
coefficient of performance.

• Knowing the amount of heat to be removed from the low-
temperature reservoir and the coefficient of performance, we 
can calculate the minimum energy that must be supplied.

• Sketch

Access the text alternative for these images
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Freezing Water in a Refrigerator 3

84

Research
• The most efficient refrigerator possible is a Carnot refrigerator.

• The maximum coefficient of performance of a Carnot 
refrigerator is given by:

• Here QL is the heat removed from inside the refrigerator,
W is the work (in terms of electrical energy) that must be 
supplied, TL is the temperature inside the refrigerator, and TH is 
the temperature of the room.

𝐾max =
𝑄L
𝑊

=
𝑇L

𝑇H − 𝑇L
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Freezing Water in a Refrigerator 4

85

• The amount of heat that must be removed to freeze a
mass m of water is given by:

• Here Lfusion = 334 kJ/kg is the latent heat of fusion of water.

Simplify

• We can solve our first equation for the energy that must be 
supplied to the refrigerator:

• Substituting in the heat removed gives us:

𝑄L = 𝑚𝐿fusion

𝑊 = 𝑄L
𝑇H − 𝑇L
𝑇L

𝑊 = 𝑚𝐿fusion
𝑇H − 𝑇L
𝑇L
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Freezing Water in a Refrigerator 5

86

Calculate
• Putting in our numerical values gives us:

Round
• We report our result to three significant figures:

Double-check
• Let’s calculate the heat removed from the water:

𝑊 = 0.250 kg 334 kJ/kg
295.15 K − 268.15 K

268.15 K
= 8.41231 J

𝑊 = 𝑚𝐿fusion
𝑇H − 𝑇L
𝑇L

𝑊 = 8.41 J

𝑄L = 𝑚𝐿fusion = 0.250 kg 334 kg/kJ = 83.5 kJ
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Freezing Water in a Refrigerator 6

• Using our result for the energy required to freeze the water, 
we can calculate the coefficient of performance of the 
refrigerator:

• The maximum coefficient of performance of a Carnot 
refrigerator is:

• Our results seem reasonable.

• Note the relatively large amount of energy required by a 
refrigerator to freeze a small quantity of water.
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𝐾 =
𝑄L
𝑊

=
83.5 kJ

8.41 kJ
= 9.93

𝐾max =
𝑇L

𝑇H − 𝑇L
=

268.15 K

295.15 K − 268.15 K
= 9.93
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The Second Law of Thermodynamics 1

• It is not possible to construct a 100% efficient heat engine.

• This fact forms the basis of the
Second Law of Thermodynamics:

It is impossible for a system to undergo a process in 
which it absorbs heat from a thermal reservoir at a given 
temperature and converts that heat completely to 
mechanical work without rejecting heat to a thermal 
reservoir at a lower temperature.

• This formulation is often called the Kelvin–Planck statement 
of the Second Law of Thermodynamics.
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The Second Law of Thermodynamics 2

Access the text alternative for these images
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The Second Law of Thermodynamics 3

• As an example, consider a book sliding on a table.

• The book slides to a stop, and the mechanical energy of 
motion is turned into thermal energy.

• This thermal energy takes the form of random motion of the 
molecules of the book, the air, and the table.

• It is impossible to convert this random motion back into 
organized motion of the book.

• It is, however, possible to convert some  of the random 
motion related to thermal energy back into mechanical 
energy.

• Heat engines do that kind of conversion.
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The Second Law of Thermodynamics 4

• If the Second Law were not true, various impossible 
scenarios could occur.

• For example, an electric power plant could operate by taking 
heat from the surrounding air, and an ocean liner could 
power itself by taking heat from the seawater.

• These scenarios do not violate the First Law of 
Thermodynamics because energy is conserved.

• The fact that they cannot occur shows that the Second Law 
contains additional information about how nature works, 
beyond the principle of conservation of energy.

• The Second Law limits the ways in which energy can be used.
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The Second Law of Thermodynamics 5

• Another way to state the Second Law relates to refrigerators.

• We know that heat flows spontaneously from a warmer 
thermal reservoir to a cooler thermal reservoir.

• Heat never spontaneously  flows from a cooler thermal 
reservoir to a warmer thermal reservoir.

• A refrigerator is a heat engine that moves heat from a cooler 
thermal reservoir to a warmer thermal reservoir; however, 
energy has to be supplied to the refrigerator for this transfer 
to take place.
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The Second Law of Thermodynamics 6

Access the text alternative for these images
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The Second Law of Thermodynamics 7

• The fact that it is impossible for a refrigerator to transfer 
thermal energy from a cooler reservoir to a warmer 
reservoir without using work is the basis of another form of 
the Second Law of Thermodynamics:

It is impossible for any process to transfer thermal 
energy from a cooler thermal reservoir to a warmer 
thermal reservoir without any work having been done to 
accomplish the transfer.

• This equivalent formulation is often called the Clausius 
statement of the Second Law of Thermodynamics.
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Entropy 1

• We have stated the Second Law of Thermodynamics  
somewhat differently from other laws such as Newton’s laws, 
because we phrased it in terms of impossibilities.

• The Second Law can be stated in a more direct manner using 
the concept of entropy.

• If two objects at different temperatures are brought into 
thermal contact, both of their temperatures will 
asymptotically approach a common equilibrium 
temperature.

• What drives this system to thermal equilibrium is entropy, 
and the state of thermal equilibrium is the state of maximum 
entropy.
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Entropy 2

• The direction of thermal energy transfer is not determined 
by energy conservation but by the change in entropy of a 
system.

• The change in entropy of a system, ΔS, during a process that 
takes the system from an initial state to a final state is 
defined as:

• The SI units for the change in entropy are joules per kelvin 
(J/K).

• This equation applies only to reversible processes.

• The integration can only be carried out over a path 
representing a reversible process.
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Entropy 3

• Entropy is defined in terms of its change from an initial to a final 
configuration.

• Entropy change is the physically meaningful quantity, not the 
absolute value of the entropy at any point.

• Another physical quantity for which only the change is important 
is the potential energy.

• In a manner like the way connections between forces and 
potential energy changes are established, we will show how to 
calculate entropy changes for given temperature changes and 
amounts of heat and work in different systems.

• At thermal equilibrium, the entropy has an extremum (a 
maximum).

• At stable equilibrium, the net force is zero, and therefore the 
potential energy has an extremum (a minimum, in this case).
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Entropy 4

• In an irreversible process in an isolated system, the entropy, 
S, of the system never decreases; it always increases or stays 
constant.

• In an isolated system, energy is always conserved, but 
entropy is not conserved.

• Thus, the change in entropy defines a direction for time; that 
is, time moves forward if the entropy of an isolated system is 
increasing.

• The definition of entropy so far rests on the macroscopic 
properties of a system, such as heat and temperature.

• Another definition of entropy, based on statistical 
descriptions of how the atoms and molecules of a system are 
arranged, is presented in the next section.
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Entropy 5

• Since the integral representing entropy can only be 
evaluated for a reversible process, how can we calculate the 
change in entropy for an irreversible process?

• The answer lies in the fact that entropy is a thermodynamic 
state variable, just like temperature, pressure, and volume.

• This means that we can calculate the entropy difference 
between a known initial state and a known final state even 
for an irreversible process, if there is a reversible process 
that takes the system from the same initial to the same final 
state.

• Perhaps this is the subtlest point about thermodynamics 
conveyed in this entire chapter.
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Entropy 6

100

• To illustrate this general method of computing the change in 
entropy for an irreversible process, let’s return to the free 
expansion of a gas.

• A gas is confined to the top half of a box and after some time 
the barrier between the two halves is removed. 

© W. Bauer and G.D. Westfall
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Entropy 7

101

• Clearly, once the gas has expanded to fill the entire volume of 
the box, the system will never spontaneously return to  the state 
where all the gas molecules are in the top half of the box.

• The state variables of the system before the barrier is removed 
are the initial temperature, Ti, the initial volume,  Vi , and the 
initial entropy, Si.

• After the barrier has been removed and the gas is again in 
equilibrium, the state of the system can be described in terms of 
the final temperature, Tf , the final volume, Vf , and the final 
entropy, Sf.



© McGraw Hill, LLC

Entropy 8

• We cannot calculate the change in entropy of this system 
using our integral because the gas is not in equilibrium 
during the expansion phase.

• However, the change in the properties of the system depends 
only on the initial and final states, not on how the system got 
from one to the other.

• Therefore, we can choose a process that the system could 
have undergone for which we can evaluate our integral.

• In the free expansion of an ideal gas, the temperature 
remains constant.

• It seems reasonable to use the isothermal expansion of an 
ideal gas.
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Entropy 9

103

• We can then evaluate our integral to calculate the change in 
entropy of the system undergoing an isothermal process:

• The work done by an ideal gas in expanding from Vi to Vf at a 
constant temperature T is given by:

• For an isothermal process, the internal energy of the gas does 
not change, so:

∆𝑆 = න
i

f𝑑𝑄

𝑇
=
1

𝑇
න
i

f

𝑑𝑄 =
𝑄

𝑇

𝑄 = 𝑛𝑅𝑇 ln
𝑉f
𝑉i

∆𝐸int = 0



© McGraw Hill, LLC

Entropy 10

• We can use the First Law of Thermodynamics to write:

• Consequently, for the isothermal process, the heat added to 
the system is:

• The resulting entropy change for the isothermal process is:
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∆𝐸int = 𝑊 −𝑄 = 0

𝑄 = 𝑊 = 𝑛𝑅𝑇 ln
𝑉f
𝑉i

∆𝑆 =
𝑄

𝑇
=
𝑛𝑅𝑇 ln

𝑉f
𝑉i

𝑇
= 𝑛𝑅 ln

𝑉f
𝑉i
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Entropy 11

105

• The entropy change for the irreversible free expansion of a gas 
must be equal to the entropy change for the isothermal process 
because both processes have the same initial and final states 
and thus must have the same change in entropy.

• For the irreversible free expansion of a gas, Vf > Vi , and so
ln(Vf /Vi) > 0.

• Thus, ΔS > 0 because n and R are positive numbers.

• The change in entropy of any irreversible process is always 
positive.

• The Second Law of Thermodynamics can be stated in a third 
way.

The entropy of an isolated system can never decrease.
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Entropy Change for the Freezing of Water 1

• Suppose we have 1.50 kg of water at a temperature of 0 °C.

• We put the water in a freezer, and enough heat is removed 
from the water to freeze it completely to ice at a temperature 
of 0 °C.

PROBLEM:

• How much does the entropy of the water-ice system change 
during the freezing process?

SOLUTION:

• The melting of ice is an isothermal process, so the change in 
entropy is:
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∆𝑆 =
𝑄

𝑇
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Entropy Change for the Freezing of Water 2

• Q is the heat that must be removed to change the water to ice 
at T = 273.15 K.

• The heat that must be removed to freeze the water is 
determined by the latent heat of fusion of water (ice).

• The heat that must be removed is:

• The change in entropy of the water-ice system is:
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𝑄 = 𝑚𝐿fusion = 1.50 kg 334 kJ/kg = 501 J

∆𝑆 =
−501 kJ

273.15 K
= −1830 J/K
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Entropy Change for the Freezing of Water 3

• Note that the entropy of the water-ice system decreased.

• How can the entropy of this system decrease?

• The Second Law of Thermodynamics states that the entropy 
of an isolated system can never decrease.

• However, the water-ice system is not an isolated system.

• The freezer used energy to remove heat from the water to 
freeze it and exhausted the heat into the local environment. 

• Thus, the entropy of that environment increased more than 
the entropy of the water-ice system decreased.

• This is a very important distinction.
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Entropy

• A similar analysis can be applied to the origins of complex 
life forms, which have much lower entropy than their 
surroundings.

• The development of life forms with low entropy is 
accompanied by an increase in the overall entropy of the 
Earth.

• In order for a living subsystem of Earth to reduce its own 
entropy at the expense of its environment, it needs a source 
of energy.

• This source of energy can be chemical bonds or other types 
of potential energy, which in the end arises from the energy 
provided to Earth by solar radiation.
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Entropy Change for the Warming of Water 1

• We start with 2.00 kg of water at 20.0 °C and warm the water 
until it reaches a temperature of 80.0 °C.

PROBLEM:

• What is the change in entropy of the water?

SOLUTION:

• We start with:

• The heat required to raise the temperature of a mass, m, of 
water is:

110

∆𝑆 = න
i

f𝑑𝑄

𝑇

𝑄 = 𝑐𝑚∆𝑇
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Entropy Change for the Warming of Water 2

• We can rewrite this equation in terms of the differential 
change in heat, dQ, and the differential change in 
temperature, dT:

• Then we can rewrite our integral as:

• Putting in our numerical values gives us:
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𝑑𝑄 = 𝑐𝑚𝑑𝑇

∆𝑆 = න
i

f𝑑𝑄

𝑇
= න

𝑇i

𝑇f 𝑐𝑚𝑑𝑇

𝑇
= 𝑐𝑚න

𝑇i

𝑇f 𝑑𝑇

𝑇
= 𝑐𝑚 ln

𝑇f
𝑇i

∆𝑆 = 4.19 kJ 2.00 kg ln
353.15 K

293.15 K
= 1.56 ∙ 103 J/K



© McGraw Hill, LLC

Microscopic Interpretation of Entropy 1

• In Chapter 19, we saw that the internal energy of an ideal gas 
could be calculated by summing up the energies of the 
constituent particles of the gas.

• We can also determine the entropy of an ideal gas by 
studying the constituent particles.

• It turns out that this microscopic definition of entropy agrees 
with the macroscopic definition.

• The ideas of order and disorder are intuitive.

• For example, a coffee cup is an ordered system.

• Smashing the cup by dropping it on the floor creates a 
system that is less ordered, or more disordered, than the 
original system.
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Microscopic Interpretation of Entropy 2

• The disorder of a system can be described quantitatively 
using the concept of microscopic states.

• Another term for a microscopic state is a degree of freedom.

• Suppose we toss n coins in the air, and half of them land 
heads up and half of them land tails up.

• The statement “half the coins are heads, and half the coins 
are tails” is a description of the macroscopic state of n coins.

• Each coin can have one of two microscopic states: heads or 
tails. 

• Stating that half the coins are heads, and half the coins are 
tails does not specify anything about the microscopic state of 
each coin.
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Concept Check 9

• When a coin is tossed, it can land heads up or tails up.

• You toss a coin 10 times, and it comes up heads every time. 

• What is the probability that the coin will come up heads on 
the 11th toss?

A. 10%

B. 20%

C. 50%

D. 90%

E. 100%
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Solution Concept Check 9

• When a coin is tossed, it can land heads up or tails up.

• You toss a coin 10 times, and it comes up heads every time. 

• What is the probability that the coin will come up heads on 
the 11th toss?

A. 10%

B. 20%

C. 50%

D. 90%

E. 100%
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Microscopic Interpretation of Entropy 3

• However, if all the coins are heads or all the coins are tails, 
the microscopic state of each coin is known.

• The macroscopic state consisting of half heads and half tails 
is a disordered  system because very little is known about 
the microscopic state of each coin.

• The macroscopic state with all heads or the macroscopic 
state with all tails is an ordered  system because the 
microscopic state of each coin is known.

• To quantify this concept, imagine tossing four coins in the air.

• There is only one way to get four heads, four ways to get 
three heads and one tail, six ways to get two heads and two 
tails, four ways to get one head and three tails, and only one 
way to get four tails.
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Microscopic Interpretation of Entropy 4

• There are five possible macroscopic states and sixteen 
possible microscopic states.

Access the text alternative for these images
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Concept Check 10

118

• The number of macrostates that can result from rolling a set of 
N six-sided dice is the number of different totals that can be 
obtained by adding the pips on the N faces that end up on top.

• The number of macrostates is

A. 6N.

B. 6N.

C. 6N – 1.

D. 5N + 1.
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Solution Concept Check 10

119

• The number of macrostates that can result from rolling a set of 
N six-sided dice is the number of different totals that can be 
obtained by adding the pips on the N faces that end up on top.

• The number of macrostates is

A. 6N.

B. 6N.

C. 6N – 1.

D. 5N + 1.

2 dice: can add to 2 through 12 ⇒ 11 macrostates
3 dice: can add to 3  through 18 ⇒ 16 macrostates
4 dice: can add to 4 through 24 ⇒ 21 macrostates
5 dice: can add to 5 through 30 ⇒ 26 macrostates
⇒ 5N + 1 
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Microscopic Interpretation of Entropy 5

120

• Suppose we toss fifty coins in the air instead of four coins. 

• There are 250 = 1.13·1015 possible microstates of this system of 
fifty tossed coins.

• The most probable macroscopic state consists of half heads and 
half tails.

• There are 1.26·1014 possible microstates with half heads and 
half tails.

• The probability that half the coins will be heads and half will be 
tails is 11.2%, while the probability of having all fifty coins land 
heads up is 1 in 1.13·1015.
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Microscopic Interpretation of Entropy 6

121

• Let’s apply these concepts to a real system of gas molecules: a 
mole of gas, or Avogadro’s number of molecules, at pressure p,  
volume V, and temperature T.

• These three quantities describe the macroscopic state of the 
gas.

• The microscopic description of the system needs to specify the 
momentum and position of each molecule of the gas.

• Each molecule has three components of its momentum and 
three components of its position.

• At any given time, the gas can be in an extremely large number 
of microscopic states, depending on the positions and 
velocities of each of its 6.02·1023 molecules.
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Microscopic Interpretation of Entropy 7

• If the gas undergoes free expansion, the number of possible 
microscopic states increases, and the system becomes more 
disordered.

• Because the entropy of a gas undergoing free expansion 
increases, the increase in disorder is related to the increase 
of entropy.

• This idea can be generalized as follows:

The most probable macroscopic state of a system is the 
state with the largest number of microscopic states, 
which is also the macroscopic state with the greatest 
disorder.
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Microscopic Interpretation of Entropy 8

• Let w be the number of possible microscopic states for a 
given macroscopic state.

• It can be shown that the entropy of the macroscopic state is 
given by:

• This equation was first written down by the Austrian 
physicist Ludwig Boltzmann and is his most significant 
accomplishment (it is chiseled into his tombstone).

• You can see that increasing the number of possible 
microscopic states increases the entropy.

• The important aspect of a thermodynamic process is not the 
absolute entropy, but the change in entropy between an 
initial state and a final state.
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𝑆 = 𝑘B ln𝑤
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Microscopic Interpretation of Entropy 9

124

• Taking this definition of entropy, the smallest number of 
microstates is one and the smallest entropy that can exist is 
then zero.

• According to this definition, entropy can never be negative. 

• In practice, determining the number of possible microscopic 
states is difficult except for special systems.

• However, the change in the number of possible microscopic 
states can often be determined, thus allowing the change in 
entropy of the system to be found.

• Consider a system that initially has wi microstates and then 
undergoes a thermodynamic process to a macroscopic state 
with wf microstates.
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Microscopic Interpretation of Entropy 10

• The change in entropy is:

• Thus, the change in entropy between two macroscopic states 
depends on the ratio of the number of possible microstates.

• The definition of the entropy of a system in terms of the 
number of possible microstates leads to further insight into 
the Second Law of Thermodynamics, which states that the 
entropy of an isolated system can never decrease.

• This means that an isolated system can never undergo a 
thermodynamic process that lowers the number of possible 
microstates.
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∆𝑆 = 𝑆f − 𝑆i = 𝑘B ln𝑤f − 𝑘B ln𝑤i = 𝑘B ln
𝑤f

𝑤i
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Microscopic Interpretation of Entropy 11
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• For example, if our free expansion of a gas were to occur in 
reverse—that is, the gas underwent free contraction into a 
volume half its original size—the number of possible 
microstates for each molecule would decrease a factor of 2.

• The probability of finding one gas molecule in half of the 
original volume then is 1/2, and the probability of finding all 
the gas molecules in half of the original volume is (1/2)N, where 
N is the number of molecules.

• If there are 100 gas molecules in the system, the probability 
that all 100 molecules end up in half the original volume is 
7.9·10–31.

• We would have to check the system approximately
1/(7.9·10–31) ≈ 1030 times to find the molecules in half the 
volume just once.
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Microscopic Interpretation of Entropy 12
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• Checking once per second, this would take about 1013 billion 
years, whereas the age of the universe is only 13.7 billion years.

• If the system contains Avogadro’s number of gas molecules, 
then the probability that the molecules will all be in half of the 
volume is even smaller.

• Thus, although the probability that this process will happen is 
not zero, it is so small that we can treat it as zero.

• We can thus conclude that the Second Law of Thermodynamics, 
even if expressed in terms of probabilities, is never violated in 
any practical situation.
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Entropy Increase during Free Expansion of a Gas 1

128

• Initially 0.500 mole of nitrogen gas is confined to a volume of 
0.500 m3.

• When the barrier is removed, the gas expands to fill the new 
volume of 1.00 m3.

PROBLEM:

• What is the change in entropy of the gas?

SOLUTION:

• Assuming we can treat the system as an isothermal expansion 
of an ideal gas, the change in entropy is:

∆𝑆 = 𝑛𝑅 ln
𝑉f
𝑉i

= 𝑛𝑅 ln
1.00 m3

0.500 m3 = 𝑛𝑅 ln 2

∆𝑆 = 0.500 mol 8.31 J/ mol K ln 2 = 2.88 J/K
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Entropy Increase during Free Expansion of a Gas 2

129

• Another approach is to examine the number of microstates of 
the system before and after the expansion to calculate the 
change in entropy.

• In this system, the number of gas molecules is:

• Before the expansion, there were wi microstates for the gas 
molecules in the left half of the container.

• After the expansion, any of the molecules could be in the left 
half or the right half of the container.

• Therefore, the number of microstates after the expansion is:

𝑁 = 𝑛𝑁A

𝑤f = 2𝑁𝑤i
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Entropy Increase during Free Expansion of a Gas 3

130

• Remembering that nR = NkB, we can express the change in 
entropy of the system as:

• Thus, we get the same result for the change in entropy of a 
freely expanding gas by looking at the microscopic properties 
of the system as by using the macroscopic properties of the 
system.

∆𝑆 = 𝑘B ln
𝑤f

𝑤i
= 𝑘B ln

2𝑁𝑤i

𝑤i
= 𝑁𝑘B ln 2 = 𝑛𝑅 ln 2
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Concept Check 11

• All reversible thermodynamic processes always proceed at

A. constant pressure.

B. constant temperature.

C. constant entropy.

D. constant volume.

E. none of the above.
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Solution Concept Check 11

• All reversible thermodynamic processes always proceed at

A. constant pressure.

B. constant temperature.

C. constant entropy.

D. constant volume.

E. none of the above.
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