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1 Entropy and the Second Law of Ther-
modynamics

1.1 Entropy

1.1.1 Definition:

Entropy is a thermodynamic quantity that represents the degree of

disorder or randomness in a system. It is denoted by the symbol

S. In a more precise sense, entropy is related to the number of

microscopic configurations or states that a system can adopt while

still maintaining the same macroscopic properties. The more possible

microstates a system has, the higher its entropy.

1.1.2 Mathematical Expression:

In thermodynamics, the change in entropy ∆S for a reversible process

is given by ∆S = Q
T , where Q is the heat transferred to the system

and T is the absolute temperature at which the transfer occurs. For

an irreversible process, the actual heat transfer dQ and the entropy

change are related by the inequality dS > dQ
T .

1.1.3 Examples:

For example, when a solid melts into a liquid, the molecules gain

more freedom of movement and the system becomes more disordered,
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resulting in an increase in entropy. Similarly, when a gas expands

into a larger volume, the number of possible positions and momenta

of the gas molecules increases, leading to an increase in entropy.

1.2 The Second Law of Thermodynamics

1.2.1 Statement:

The second law of thermodynamics can be stated in several equiva-

lent ways. One common statement is that heat spontaneously flows

from a hotter body to a colder body and not in the opposite direction

without the input of external work. Another statement is that the

entropy of an isolated system always increases or remains constant

in a spontaneous process; it never decreases. Mathematically, for an

isolated system, ∆S ≥ 0.

1.2.2 Implications:

- Direction of Natural Processes: It determines the direction

in which natural processes occur. Processes that increase the entropy

of the universe are spontaneous, while those that would decrease the

entropy of the universe are not spontaneous and require external in-

tervention.

- Limitations on Energy Conversion: It implies that in any

energy conversion process, there is always some energy that is un-

available to do useful work. This is because as energy is transferred or
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converted, the entropy of the system and its surroundings increases,

and the quality of the energy degrades.

- Heat Engines: The second law places fundamental limitations

on the efficiency of heat engines. No heat engine can have an effi-

ciency of 100% because some heat must always be rejected to a lower-

temperature reservoir to satisfy the increase in entropy requirement.
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2 Entropy in a reversible process

In a reversible process, the system and its surroundings can be re-

stored to their original states without leaving any trace of the process.

The change in entropy of the system plus the change in entropy of

the surroundings is zero. Here are some examples of entropy change

in reversible processes:

2.1 Reversible Isothermal Expansion or Com-
pression of an Ideal Gas

2.1.1 Process Description:

An ideal gas is contained in a piston-cylinder device and is allowed

to expand or compress at a constant temperature. The process is

reversible if it is carried out extremely slowly, with the gas always in

thermodynamic equilibrium.

2.1.2 Entropy Change Calculation

For an isothermal reversible expansion of an ideal gas from an initial

volume V1 to a final volume V2, the heat transferred Q to the gas

is given by Q = W = nRT ln V2
V1
, where n is the number of moles

of the gas, R is the universal gas constant, and T is the absolute

temperature. The change in entropy of the gas ∆S is ∆S = Q
T =

nR ln V2
V1
. If the gas is compressed reversibly from V2 to V1, the
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entropy change is ∆S = nR ln V1
V2

= −nR ln V2
V1
, which means the

entropy change of the gas is negative during compression, and the

entropy change of the surroundings is positive by the same amount,

so the total entropy change of the system and surroundings is zero.

2.2 Reversible Phase Change

2.2.1 Process Description:

Consider a substance that undergoes a phase change, such as water

boiling to steam or steam condensing to water, at a constant tem-

perature and pressure. If the heat is supplied or removed in such a

way that the process can be reversed at any point, it is a reversible

phase change.

2.2.2 Entropy Change Calculation:

During a phase change, the heat transferred Q = ±mL, where m

is the mass of the substance and L is the latent heat of the phase

change. The plus sign is for absorption of heat (e.g., melting or

vaporization) and the minus sign is for release of heat (e.g., freezing

or condensation). The change in entropy ∆S = Q
T = ±mL

T . For

example, when water boils at 100◦C (373 K) and a mass m of water

turns into steam, if the latent heat of vaporization L = 2260kJ/kg,

for 1kg of water, the entropy change ∆S = mL
T = 1×2260×103

373 J/K ≈
6060J/K. When the steam condenses back to water at the same
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temperature, the entropy change of the steam is −6060J/K, and

the entropy change of the surroundings is +6060J/K, so the overall

entropy change of the system and surroundings is zero.

2.3 Reversible Heat Transfer between Two
Bodies with Infinitesimal Temperature Dif-
ference

2.3.1 Process Description:

Two bodies with temperatures T1 and T2, where T1 is slightly higher

than T2, are brought into contact. Heat is transferred from the hotter

body to the colder body in a reversible manner. This requires that

the temperature difference ∆T = T1−T2 is infinitesimally small and

the heat transfer occurs very slowly.

2.3.2 Entropy Change Calculation:

Let Q be the amount of heat transferred. The entropy change of

the hotter body ∆S1 = −Q
T1

and the entropy change of the colder

body ∆S2 = Q
T2
. The total entropy change ∆S = ∆S1 + ∆S2 =

Q
(

1
T2

− 1
T1

)
. As T1 and T2 are very close, ∆S ≈ 0. In the limit as

∆T → 0, the process is reversible and the total entropy change of

the system of two bodies and their surroundings is exactly zero.
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3 Entropy in an irreversible process

For an irreversible process, the change in entropy (∆S) is always

greater than the heat transfer divided by the temperature. This can

be understood through the following aspects:

3.1 General Relationship

- The change in entropy for any process (reversible or irreversible)

is defined in terms of a reversible path between the initial and final

states. Mathematically, the entropy change is given by ∆S =
∫

dQrev
T ,

where dQrev is the heat transfer in a reversible process and T is the

absolute temperature.

- For an irreversible process, the actual heat transfer dQ and the

entropy change are related by the inequality dS > dQ
T . This means

that the entropy change of the system for an irreversible process is

greater than the heat transfer divided by the temperature of the

system.

3.2 Entropy Production

- In an irreversible process, there is always some form of dissipation

or irreversibility present, such as friction, heat transfer across a fi-

nite temperature difference, or diffusion. These processes lead to an
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increase in the entropy of the system and its surroundings.

- The total entropy change of the system and its surroundings (∆Stotal =

∆Ssystem +∆Ssurroundings) for an irreversible process is greater than

zero, i.e., ∆Stotal > 0. This increase in total entropy is often referred

to as entropy production.

3.3 Examples

3.3.1 Free Expansion of a Gas:

Consider an ideal gas that is initially confined in one part of a con-

tainer and then allowed to expand freely into an evacuated larger

volume. This is an irreversible process. During the free expansion,

no heat is transferred to or from the gas (Q = 0), and no work is

done (W = 0). However, the entropy of the gas increases because

the gas molecules now have more available volume and thus more

possible microstates. The entropy change can be calculated using

the formula ∆S = nR ln
Vf
Vi
, where n is the number of moles of the

gas, R is the gas constant, Vf is the final volume, and Vi is the initial

volume.

3.3.2 Heat Transfer Across a Finite Temperature Dif-

ference:

When heat flows from a hot body at temperature TH to a cold body

at temperature TC (TH > TC), the process is irreversible. The
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entropy change of the hot body is ∆SH = − Q
TH

(negative because

heat is lost by the hot body) and the entropy change of the cold

body is ∆SC = Q
TC
. The total entropy change of the system is

∆S = ∆SH +∆SC = Q
(

1
TC

− 1
TH

)
> 0.

In summary, the change in entropy for an irreversible process is

characterized by an increase in the total entropy of the system and its

surroundings, and it is always greater than what would be calculated

based on the heat transfer alone if the process were assumed to be

reversible.
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4 Reversible engines

In thermodynamics, a reversible engine is an idealized heat engine

that operates in a reversible cycle, meaning it can be run in reverse

without any loss of energy. The Carnot engine is a theoretical model

of this kind.

4.1 Carnot Engine

4.1.1 Working Principle

The Carnot engine operates on the Carnot cycle, which consists of

four reversible processes: isothermal expansion, adiabatic expansion,

isothermal compression, and adiabatic compression. It uses a work-

ing fluid, such as an ideal gas, and exchanges heat with two heat

reservoirs at different temperatures, a hot reservoir at temperature

TH and a cold reservoir at temperature TC .

4.1.2 Efficiency

The Carnot engine is the most efficient reversible engine possible be-

tween two given temperatures. It serves as a theoretical benchmark

for the maximum efficiency that any heat engine can achieve operat-

ing between the same two temperatures, as dictated by the Carnot
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efficiency formula:

ηCarnot ≡
QH −QC

QH
= 1− TC

TH
,

because for the Carnot cycle, QC
QH

= TC
TH

. This can be shown by noting

that the Q = nRT ln(Vf/Vi) in the isothermal process and PiV
γ
i =

PfV
γ
f in the adiabatic process, with the ideal gas law PV = nRT .

Furthermore, from energy conservation, the total work done by the

system of gas in each cycle is Wgas = QH − QC , and the efficiency

of the heat engine is defined as η ≡ Wgas

QH
.

4.1.3 Entropy

In a Carnot engine, the working fluid undergoes a cyclic process con-

sisting of two isothermal and two adiabatic processes. The entropy

changes of the working fluid and its surroundings are as follows:

- Change in entropy of the working fluid:

- For the complete Carnot cycle, the entropy change of the working

fluid is zero. This is because the Carnot cycle is a reversible cycle.

Entropy is a state function, and for a complete cycle that returns

the system (the working fluid) to its initial state, the net change in

entropy is zero.

- During the isothermal expansion process at temperature TH (heat

source temperature), the working fluid absorbs heat QH and the en-

tropy change is ∆S1 =
QH
TH

.
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- During the adiabatic expansion process, the working substance fur-

ther expands adiabatically, meaning that no heat is exchanged with

the surroundings. The temperature of the working substance drops

from TH to TC as it works in the surroundings. The adiabatic pro-

cesses in the Carnot cycle do not change the entropy of the system

because there is no heat exchange.

- During the isothermal compression process at temperature TC (heat

sink temperature), the working fluid releases heatQC and the change

in entropy is ∆S2 = −QC
TC

.

- During the adiabatic compression process, the working substance is

compressed adiabatically until it returns to its initial state, with the

temperature increasing to TH . Again, no heat is exchanged with the

surrounding. The temperature of the working substance increases

from TC to TH , and the environment does the same amount of work,

as during the adiabatic expansion process.

- For a Carnot engine,
QH
TH

= QC
TC

,

so the net entropy change of the working fluid over the entire cycle

∆S = ∆S1 +∆S2 = 0.

- Change in entropy of the surroundings:

- The heat source loses heat QH at temperature TH , so the entropy

change of the heat source is ∆SH = −QH
TH

.

- The heat sink gains heat QC at temperature TC , so the change in

12



entropy of the heat sink is ∆SC = QC
TC

.

- Since QH
TH

= QC
TC

, the net entropy change of the surroundings

∆Ssurr = ∆SH +∆SC = −QH
TH

+ QC
TC

= 0

for a reversible Carnot cycle.

In summary, for a Carnot engine, both the working fluid and its

surroundings have a net entropy change of zero over a complete cycle

when the process is reversible.

4.1.4 Statistical Mechanics and Thermodynamics

To derive QH
TH

= QC
TC

for a Carnot engine using statistical mechanics,

the following steps can be taken based on the principles of entropy

and the Boltzmann distribution. The key lies in relating the heat

exchanges and temperatures to the changes in the number of mi-

crostates of the system at different temperatures.

- Entropy and Heat Exchange:

- In statistical mechanics, the entropy S of a system at thermal

equilibrium is given by the Boltzmann formula S = kB ln Ω, where

kB is the Boltzmann constant and Ω is the number of microstates of

the system.

- For a reversible process, the heat exchangeQ with the surroundings

is related to the change in entropy ∆S by the equation ∆S = Q
T .

- The Carnot Cycle in Terms of Microstates:

- Isothermal Expansion at TH:

When the Carnot engine absorbs heat QH from the hot reservoir at
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temperature TH during the isothermal expansion, the system goes

from an initial state with Ω1 microstates to a final state with Ω2 mi-

crostates. The change in entropy ∆SH is ∆SH = S2−S1 = kB ln Ω2
Ω1
.

From ∆S = Q
T , we have

QH
TH

= kB ln Ω2
Ω1
.

- Isothermal Compression at TC:

During the isothermal compression at temperature TC , the system

rejects heat QC to the cold reservoir. Let the number of microstates

change from Ω3 to Ω4. The change in entropy ∆SC is ∆SC =

S4 − S3 = kB ln Ω4
Ω3
, and −QC

TC
= kB ln Ω4

Ω3
. The negative sign in-

dicates that heat is being removed from the system.

- Connecting the Microstates:

- Since the Carnot cycle is reversible and the system returns to its

original state after a complete cycle, the net change in entropy, which

is a state function of the system, must be zero.

- The adiabatic processes in the Carnot cycle do not change the en-

tropy of the system because there is no heat exchange. Hence, the

net change in entropy due to the isothermal processes must be zero

for a complete cycle, that is ∆Stotal = ∆SH +∆SC = 0.

- kB ln Ω2
Ω1

+ kB ln Ω4
Ω3

= 0, which simplifies to ln Ω2
Ω1

= − ln Ω4
Ω3
, and

further to Ω2
Ω1

= Ω3
Ω4
.

- Deriving the Heat-Temperature Relationship:

- From QH
TH

= kB ln Ω2
Ω1

and −QC
TC

= kB ln Ω4
Ω3
, and using Ω2

Ω1
= Ω3

Ω4
, we
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can rewrite −QC
TC

= kB ln Ω4
Ω3

= kB ln Ω1
Ω2
.

- Then QH
TH

= kB ln Ω2
Ω1

and QC
TC

= −kB ln Ω1
Ω2

= kB ln Ω2
Ω1
.

- Therefore, QH
TH

= QC
TC

.

4.2 Stirling Engine versus Carnot Engine

The Stirling engine is a practical engine, while the Carnot engine is

a theoretical one.

4.2.1 Working Principle

- The Stirling engine is a practical engine that operates in a closed

regenerative thermodynamic cycle. The Stirling cycle consists of two

isothermal processes and two constant-volume processes (regenera-

tion).

4.2.2 Efficiency

- In theory, under ideal conditions (reversible processes and perfect

regeneration), the Stirling engine can achieve the same efficiency as

the Carnot engine, i.e., η = 1− TC
TH

.

- However, in practice, the Stirling engine’s efficiency is lower due to

real-world irreversibilities, such as friction, heat losses, and imperfect

regeneration.
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4.2.3 Entropy

- Change in entropy of the working fluid:

- Isothermal processes: In a Stirling engine, there are two isothermal

processes. During isothermal expansion at a higher temperature TH ,

the working fluid absorbs heat QH from the hot reservoir. The en-

tropy change of the working fluid in this process is ∆S1 =
QH
TH

. Dur-

ing isothermal compression at a lower temperature TC , the working

fluid releases heat QC to the cold reservoir and the change in entropy

is ∆S2 = −QC
TC

- Regenerator processes: The two other processes in a Stirling cy-

cle are constant-volume processes where the working fluid exchanges

heat with the regenerator. Ideally, the regenerator is a perfect heat

exchanger and the net heat transfer to and from the working fluid in

these processes is zero over a complete cycle. So, the entropy change

due to the interaction with the regenerator is zero.

- Net entropy change: For a complete Stirling cycle, if the engine

is operating reversibly, the entropy change of the working fluid is

zero, because entropy is a state function and the working fluid re-

turns to its initial state after a complete cycle. That is ∆S =

∆S1 + ∆S2 + ∆Sregen = 0, where ∆Sregen is the entropy change

due to the regenerator processes and is zero.

- Entropy change of the surroundings:

- Hot reservoir: The hot reservoir supplies heat QH to the working

fluid at temperature TH . So the entropy change of the hot reservoir
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is ∆SH = −QH
TH

- Cold reservoir: The cold reservoir receives heat QC from the work-

ing fluid at temperature TC . So the entropy change of the cold

reservoir is ∆SC = QC
TC

- Regenerator: As the regenerator is internal to the engine and ideally

does not exchange heat with the surroundings over a complete cycle,

it does not contribute to the entropy change of the surroundings.

- Net entropy change: For a reversible Stirling engine, the net entropy

change of the surroundings is ∆Ssurr = ∆SH + ∆SC = −QH
TH

+ QC
TC

.

From the efficiency of the Stirling engine and the first law of ther-

modynamics, for a reversible operation QH
TH

= QC
TC

, so ∆Ssurr = 0

In an ideal, reversible Stirling engine, both the working fluid and

the surroundings have a net entropy change of zero over a complete

cycle. However, in a real Stirling engine, due to irreversibilities such

as heat transfer losses, friction, and nonideal regenerator operation,

the entropy change of the system and the surroundings will be greater

than zero, indicating an increase in the overall entropy of the uni-

verse.

4.3 A note on Real Engines

In general, real engines are not reversible engines. A few reasons are

listed below.

- Friction and Viscosity:

In real engines, there are always frictional forces between moving
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parts. For example, in a car engine, the pistons moving in the cylin-

ders experience friction. Friction converts some of the useful work

into heat that is dissipated and cannot be recovered to do the work

again. Viscous forces in the working fluid also cause energy losses.

These irreversible processes lead to a decrease in the overall efficiency

of the engine and prevent it from being reversible.
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5 The third law of thermodynamics

5.1 Statement:

The third law of thermodynamics states that as the temperature of

a system approaches absolute zero, the entropy (or disorder) of the

system approaches a minimum value.

- In simpler terms, it means that It is impossible to reach the absolute

zero temperature (0 Kelvin) in a finite number of steps. Namely, no

matter how many cooling processes or operations are carried out, it

is impossible to cool a system exactly to absolute zero (0 K).

- In other words, we can get very close to absolute zero, but we can

never actually reach it. Absolute zero is more of an unattainable

limit.

5.1.1 Nernst Heat Theorem:

As absolute zero is approached, the entropy change ∆S for a chemical

or physical transformation approaches 0. Mathematically, it can be

expressed as limT→0∆S = 0, where S represents entropy and T is

the temperature.

5.2 Entropy in statistical mechanics

- At absolute zero temperature, the system is in the state with the

minimum thermal energy, the ground state.
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- Entropy reaches zero only when the system has a unique ground

state (i.e., the state with the minimum thermal energy has only one

configuration, or microstate).

- Microstates are used here to describe the probability of a system

being in a specific macroscopic state.

- At thermal equilibrium, each microstate has the same probability

of occurring, the macroscopic states with fewer microstates are less

probable. The entropy of the system is related to the number of

possible microstates according to the Boltzmann principle

S = kB ln Ω,

where S is the entropy of the system, kB is the Boltzmann constant,

and Ω the number of microstates.

- At absolute zero temperature, there is only 1 microstate possible

for a perfect crystal. Hence, Ω = 1, and S = ln(1) = 0.

- The entropy of a perfect crystal approaches zero as the temperature

approaches absolute zero.

- The concept of absolute zero is the lowest limit of temperature in

thermodynamics.

- Based on the Nernst heat theorem, it can be inferred that the

heat capacity of a substance approaches zero as the temperature

approaches absolute zero. Hence, the thermal motion of particles in

the system is extremely weak, and the ability of the system to absorb

or release heat is almost lost, which is an important feature of the

system at absolute zero.
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6 The application of Statistical Me-
chanics in Thermodynamics

The statistical mechanics was applied to establish a connection be-

tween the physics of microscopic systems and macroscopic thermody-

namics, providing a theoretical basis for understanding the behavior

of matter at the microscopic level.

6.1 Core Concepts

- Macrostate and Microstate:

A macrostate represents the overall characteristics of a microscopic

system, such as its total energy. In contrast, a microstate details the

specific motion states of particles within that system. Multiple mi-

crostates can correspond to the same macrostate. A microcanonical

ensemble consists of microstates with identical energy levels. In ther-

mal equilibrium, each microstate has an equal probability of occur-

rence, adhering to the ergodic hypothesis. It suggests that a system

will eventually explore all accessible states given enough time. Note

that thermal equilibrium occurs when the probability distribution of

a system becomes time independent.

– Boltzmann Distribution:

When a system reaches thermal equilibrium, the Boltzmann distri-

bution describes the probability of the system being in a specific

microstate, which is related to the number of microstates in the en-
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vironment. Its formula is

p(Ei) =
1

Z
e−βEi,

where

β =
1

kBT
,

with kB being the Boltzmann constant.

The partition function

Z =
∑
i

e−βEi,

which is a fundamental concept in statistical mechanics. It encap-

sulates information about all the microstates of a system at thermal

equilibrium and their corresponding probabilities. Various statistical

quantities of the system can be calculated by taking the derivative

of its logarithm.

6.2 Important Theories

– Entropy and Temperature:

Entropy

S = kB ln Ω

is used to measure the diversity of microstates in a system. Temper-
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ature is defined as

1

T
=

∂S

∂E
= kB

∂ ln(Ω(E))

∂E
.

This definition is consistent with the physical intuition that heat flows

from high-temperature to low-temperature regions and also conforms

to the zeroth law of thermodynamics.

- Ensemble Theory:

The canonical ensemble includes all possible microstates of a system

when it is in thermal equilibrium with its environment, with a fixed

number of particles. Also, time averages and ensemble averages are

equivalent for an ergodic system.

6.3 Applications

- Calculation of Statistical Quantities:

Using the partition function, statistical quantities such as the average

energy

E = −d lnZ

dβ
,

and the pressure

P =
1

β

d lnZ

dV

can be calculated by taking the ensemble averages

X ≡ ⟨Xi⟩ =
∑
i

p(Ei)Xi,
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for X being E or P , etc.

- The Laws of Thermodynamics:

The three laws of thermodynamics can be written as

(1)

dE = TdS − PdV, with Q = TdS and W = PdV,

(2)

∆S ≥ 0,

(3)

T → 0 ⇒ S → 0.
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7 The relationship between photo-
synthesis and entropy increase

Photosynthesis is a chemical process where plants, algae, and certain

bacteria use sunlight, water, and carbon dioxide to create oxygen and

sugar (glucose), essentially ”making their own food” by converting

light energy into chemical energy that can be used by the organism;

this process is vital for life on Earth as it produces the oxygen we

breathe.

The relationship between photosynthesis and entropy increase is

complex and can be understood from the following aspects:

7.1 Photosynthesis as a Local Entropy-Decreasing
Process

- Energy Conversion and Order Creation:

Photosynthesis is a process by which plants, algae, and some bacteria

convert light energy from the sun into chemical energy stored in

the bonds of organic molecules like glucose. In this process, carbon

dioxide and water are taken in and assembled into more complex and

organized organic compounds. From a thermodynamic perspective,

this represents a decrease in entropy locally. The random molecules

of carbon dioxide and water are converted into more ordered and

structured organic substances, reducing the degree of disorder.

- Example:
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Consider a plant leaf. Inside the chloroplasts, the process of pho-

tosynthesis takes disordered molecules and arranges them into the

highly ordered structure of glucose. This is similar to taking a pile

of building blocks (disordered) and assembling them into a specific

building (ordered), which is a decrease in entropy within the system

of the plant.

7.2 Entropy Increase in the Larger Context

- Energy Dissipation:

Although photosynthesis itself leads to a decrease in entropy within

the plant or photosynthetic organism, it does not violate the second

law of thermodynamics, which states that the total entropy of an

isolated system always increases over time. This is because the pro-

cess of photosynthesis requires an input of energy from the sun. The

sun is constantly radiating energy into the universe, and this energy

transfer is associated with an overall increase in entropy. The light

energy that drives photosynthesis is part of a larger energy flow in

the universe, and the net effect is still an increase in the total entropy

of the universe.

- Heat Release:

During photosynthesis, not all of the absorbed light energy is con-

verted into chemical energy. Some of the energy is dissipated as heat.

This heat release contributes to an increase in the entropy of the sur-

roundings. For example, if you consider a plant in a room, the heat
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given off by the plant during photosynthesis slightly increases the

disorder of the air molecules in the room, increasing the entropy of

the surrounding environment.

In summary, photosynthesis is a process that results in a local de-

crease in entropy within the photosynthetic organisms as it creates

order and stores energy in organic compounds. However, when con-

sidering the entire system including the sun and the surroundings,

the overall effect is still in line with the second law of thermody-

namics, with the total entropy of the universe increasing due to the

energy flow and heat dissipation associated with the process.

The direction of thermal energy transfer is not determined by

energy conservation but by the change in entropy of a closed system,

with ∆S ≥ 0.
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