Planck Radiation Formula

From the assumption that the electromagnetic modes in a cavity were quantized in energy with the quantum energy equal to Planck's constant times the frequency, Planck derived a radiation formula. The average energy per "mode" or "quantum" is the energy of the quantum times the probability that it will be occupied (the Einstein-Bose distribution function):

$$\langle E \rangle = \frac{hv}{e^{h\mathbf{v}/kT} - 1}$$

This average energy times the <u>density of such states</u>, expressed in terms of either frequency or wavelength

$$\rho(v) = \frac{dn_s}{dv} = \frac{8\pi}{c^3}v^2 \qquad \qquad \rho(\lambda) = \frac{dn_s}{d\lambda} = \frac{8\pi}{\lambda^4}$$

gives the energy density, the Planck radiation formula.

 $S_{v} = \frac{8\pi h}{c^3} \frac{v^3}{e^{hv/kT} - 1}$ Energy per unit **Example** volume per unit frequency

Energy per unit volume per unit $S_{\lambda} = \frac{8\pi hc}{\lambda^5} \frac{1}{e^{hc/\lambda kT} - 1} \left| \frac{\text{Example}}{e^{hc/\lambda kT}} \right|$ wavelength

The Planck radiation formula is an example of the <u>distribution of energy</u> according to <u>Bose-</u> Einstein statistics. The above expressions are obtained by multiplying the density of states in terms of frequency or wavelength times the <u>photon energy</u> times the Bose-Einstein distribution function with normalization constant A=1.

To find the <u>radiated power per unit area</u> from a surface at this temperature, multiply the energy density by c/4. The density above is for thermal equilibrium, so setting inward=outward gives a factor of 1/2 for the radiated power outward. Then one must average over all angles, which gives another factor of 1/2 for the angular dependence which is the square of the cosine.

Major applications of the Planck formula

HyperPhysics***** Quantum Physics

R Nave

Go Ba

Index to **HyperPhysics**

*The true address of the document is not shown when the index is open.

Google search of **HyperPhysics**

- * acceleration
- * absorption,
- quantum
- *adhesion
- *admittance
- * air, constituents
- * air friction
- * airbag
- * airfoil

<u>Ind</u>

Black

radia

conc

- * airplane in wind
- * albedo
- * algebra
- * Alpha Centauri
- * alpha particle
- * alveoli of lungs
- * Ampere's Law
- * AM radio
- * angular
- acceleration
- * angular
- displacement
- * angular
- momentum * angular
- momentum,
- <u>quantize</u>d
- * angular velocity
- * Archimedes' principle
- * arctangent
- problem
- * aspirator
- * astronomical <u>uni</u>t
- * asymptotic
- freedom * atmosphere,
- constituents
- * atmospheric pressure
- * atomic clock
- * atomic mass unit -