Comments on the Development of the Rayleigh-Jeans Law The Rayleigh-Jeans Law was an important step in our understanding of the equilibrium radiation from a hot object, even though it turned out not to be an accurate description of nature. The careful work in developing the Rayleigh-Jeans law laid the foundation for the quantum understanding expressed in the <u>Planck radiation formula</u>. In outline form, here are the steps which led to the Rayleigh-Jeans law. Equilibrium standing wave electromagnetic radiation in a cubical cavity of dimension L must meet the condition: $$n_1^2 + n_2^2 + n_3^2 = \frac{4L^2}{\lambda^2}$$ Show The number of modes in the cavity is: $$N = \frac{8\pi L^3}{3\lambda^3}$$ Show ## Index to **HyperPhysics** *The true address of the document is not shown when the index is open. ## Google search of **HyperPhysics** - * acceleration - * absorption, quantum - *adhesion - * air, constituents - air friction - airbag - * airfoil - * airplane in wind - * albedo - * algebra - * Alpha Centauri - * alpha particle - * alveoli of lungs - * Ampere's Law - * AM radio - * angular - acceleration - displacement - * angular - momentum - quantized - * angular velocity - * Archimedes' - principle - * arctangent - <u>problem</u> - * aspirator - * astronomical <u>unit</u> - * asymptotic freedom - * atmosphere, Ind Rayle <u>Jea</u> - constituents - * atmospheric - pressure * atomic clock - atomic mass unit