

Comments on the Development of the Rayleigh-Jeans Law

The Rayleigh-Jeans Law was an important step in our understanding of the equilibrium radiation from a hot object, even though it turned out not to be an accurate description of nature. The careful work in developing the Rayleigh-Jeans law laid the foundation for the quantum understanding expressed in the <u>Planck radiation formula</u>. In outline form, here are the steps which led to the Rayleigh-Jeans law.

Equilibrium standing wave electromagnetic radiation in a cubical cavity of dimension L must meet the condition:

$$n_1^2 + n_2^2 + n_3^2 = \frac{4L^2}{\lambda^2}$$
 Show

The number of modes in the cavity is:

$$N = \frac{8\pi L^3}{3\lambda^3}$$
 Show

Index to **HyperPhysics**

*The true address of the document is not shown when the index is open.

Google search of **HyperPhysics**

- * acceleration
- * absorption, quantum
- *adhesion
- * air, constituents
- air friction
- airbag
- * airfoil
- * airplane in wind
- * albedo
- * algebra
- * Alpha Centauri
- * alpha particle
- * alveoli of lungs
- * Ampere's Law
- * AM radio
- * angular
- acceleration
- displacement
- * angular
- momentum

- quantized
- * angular velocity
- * Archimedes'
- principle
- * arctangent
- <u>problem</u>
- * aspirator
- * astronomical <u>unit</u>
- * asymptotic freedom
- * atmosphere,

Ind

Rayle

<u>Jea</u>

- constituents
- * atmospheric
- pressure * atomic clock
- atomic mass unit