Wavelength plot	Radiation curve examples

HyperPhysics***** Quantum Physics

R Nave

Go Ba

Comments on the Development of the Rayleigh-Jeans Law

The Rayleigh-Jeans Law was an important step in our understanding of the equilibrium radiation from a hot object, even though it turned out not to be an accurate description of nature. The careful work in developing the Rayleigh-Jeans law laid the foundation for the quantum understanding expressed in the Planck radiation formula. In outline form, here are the steps which led to the Rayleigh-Jeans law.

Equilibrium standing wave electromagnetic radiation in a cubical cavity of dimension L must meet the condition:	$n_1^2 + n_2^2 + n_3^2 = \frac{4L^2}{\lambda^2}$	Show	Ind
The number of modes in the cavity is:	$N = \frac{8\pi L^3}{3\lambda^3}$	Show	Rayle Jea refere
The number of modes per unit wavelength is:	$-\frac{dN}{d\lambda} = \frac{8\pi L^3}{\lambda^4}$	Show	Black radia
The energy per unit volume per unit wavelength is:	$\frac{du}{d\lambda} = \frac{8\pi kT}{\lambda^4}$	Show	conc
The average radiated energy per unit wavelength is:	$\frac{dR}{d\lambda} = \frac{2\pi ckT}{\lambda^4}$	Show	
Which when expressed in terms of frequency is:	$\frac{dR}{dv} = \frac{2\pi v^2 kT}{c^2}$	Show	

Wavelength plot Radiation curve examples

HyperPhysics***** Quantum Physics

R Nave

Go Ba

Index to **HyperPhysics**

*The true address of the document is not shown when the index is open.

Google search of **HyperPhysics**

- * acceleration
- * absorption,
- quantum
- *adhesion *admittance
- * air, constituents
- * air friction
- * airbag
- * airfoil

- * airplane in wind
- * albedo
- * algebra
- * Alpha Centauri
- * alpha particle
- * alveoli of lungs
- * Ampere's Law
- * AM radio
- * angular acceleration
- * angular
- <u>displacement</u>
- * angular
- momentum
- * angular
- momentum,
- <u>quantize</u>d
- * angular velocity
- * Archimedes'
- principle
- * arctangent problem
- * aspirator
- * astronomical <u>unit</u>
- * asymptotic freedom
- * atmosphere,
- constituents * atmospheric
- pressure
- * atomic clock
- * atomic mass unit