| Wavelength plot | Radiation curve examples | |-----------------|--------------------------| | | | HyperPhysics***** Quantum Physics R Nave Go Ba ## **Comments on the Development of the Rayleigh-Jeans Law** The Rayleigh-Jeans Law was an important step in our understanding of the equilibrium radiation from a hot object, even though it turned out not to be an accurate description of nature. The careful work in developing the Rayleigh-Jeans law laid the foundation for the quantum understanding expressed in the Planck radiation formula. In outline form, here are the steps which led to the Rayleigh-Jeans law. | Equilibrium standing wave electromagnetic radiation in a cubical cavity of dimension L must meet the condition: | $n_1^2 + n_2^2 + n_3^2 = \frac{4L^2}{\lambda^2}$ | Show | Ind | |---|---|------|------------------------| | The number of modes in the cavity is: | $N = \frac{8\pi L^3}{3\lambda^3}$ | Show | Rayle
Jea
refere | | The number of modes per unit wavelength is: | $-\frac{dN}{d\lambda} = \frac{8\pi L^3}{\lambda^4}$ | Show | Black
radia | | The energy per unit volume per unit wavelength is: | $\frac{du}{d\lambda} = \frac{8\pi kT}{\lambda^4}$ | Show | conc | | The average radiated energy per unit wavelength is: | $\frac{dR}{d\lambda} = \frac{2\pi ckT}{\lambda^4}$ | Show | | | Which when expressed in terms of frequency is: | $\frac{dR}{dv} = \frac{2\pi v^2 kT}{c^2}$ | Show | | Wavelength plot Radiation curve examples HyperPhysics***** Quantum Physics R Nave Go Ba ## Index to **HyperPhysics** *The true address of the document is not shown when the index is open. ## Google search of **HyperPhysics** - * acceleration - * absorption, - quantum - *adhesion *admittance - * air, constituents - * air friction - * airbag - * airfoil - * airplane in wind - * albedo - * algebra - * Alpha Centauri - * alpha particle - * alveoli of lungs - * Ampere's Law - * AM radio - * angular acceleration - * angular - <u>displacement</u> - * angular - momentum - * angular - momentum, - <u>quantize</u>d - * angular velocity - * Archimedes' - principle - * arctangent problem - * aspirator - * astronomical <u>unit</u> - * asymptotic freedom - * atmosphere, - constituents * atmospheric - pressure - * atomic clock - * atomic mass unit