Electron Transitions The <u>Bohr model</u> for an electron transition in hydrogen between <u>quantized energy levels</u> with different quantum numbers n yields a photon by <u>emission</u> with <u>quantum energy</u>: A downward transition involves emission of a photon of energy: $$E_{photon} = hv = E_2 - E_1$$ Given the expression for the energies of the hydrogenic electron states for atoms of atomic number Z: $$h\upsilon = \frac{Z^2 m e^4}{8h^2 \varepsilon_0^2} \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right] = -13.6Z^2 \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right] eV$$ This is often expressed in terms of the inverse wavelength or "wave number" as follows: $$\frac{1}{\lambda} = R_H Z^2 \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right] \text{ where } R_H = \frac{me^4}{8h^3c\varepsilon_0^2} \text{ is called the Rydberg constant.}$$ $$R_H = 1.09677576 x 10^7 \, m^{-1}$$ for hydrogen. $$R_{\infty} = 1.0973731x10^7 \, m^{-1}$$ in the limiting case for heavy elements The reason for the variation of R is that for hydrogen the mass of the orbiting electron is not negligible compared to the proton at the high accuracy at which spectral measurement is done. So the <u>reduced mass</u> of the electron is needed. But for heavier elements the movement of the nucleus can be neglected. HyperPhysics***** Quantum Physics R Nave Go] ## **Hydrogen Energy Levels** The basic hydrogen energy level structure is in agreement with the <u>Bohr model</u>. Common pictures are those of a shell structure with each main shell associated with a value of the principal quantum number n. ## Index to HyperPhysics *The true address of the document is not shown when the index is open. ## Google search of HyperPhysics - * acceleration - * <u>absorption</u>, quantum - *adhesion Inc <u>Atc</u> - <u>adification</u> - *admittance - * air, constituents - * air friction - * airbag - * airfoil - * airplane in wind - * albedo - * algebra - * Alpha Centauri - * <u>alpha particle</u> - * <u>alveoli of lungs</u> * <u>Ampere's Law</u> - ' A D S T - * AM radio - * angular - acceleration* angular - displacement - * angular - momentum - * angular - momentum, - quantized - * angular velocity - * Archimedes' - <u>principle</u> - * <u>arctangent</u> problem - * aspirator - * <u>astronomical</u> <u>unit</u> - * <u>asymptotic</u> freedom - * <u>atmosphere</u>, <u>constituents</u> - * <u>atmospheric</u> <u>pressure</u> - * atomic clock - * atomic mass unit •