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1 Derivation of the Schrödinger Equa-
tion

The Schrödinger equation emerges from unifying wave-particle dual-

ity with classical physics principles. Here’s the structured argument:

1. Physical Motivation: Wave-Particle Duality

- de Broglie Hypothesis : Particles exhibit wave-like behavior with

wavelength:

λ =
h

p
,

where p is momentum.

- Wave Function (ψ) : Describes quantum states, with |ψ(x, t)|2
as the probability density.

- Probability Conservation : Governed by the continuity equation:

∂

∂t
|ψ|2 +∇ · J⃗ = 0,

where J⃗ = ℏ
2mi (ψ

∗∇ψ − ψ∇ψ∗).

2. Classical Wave Equation Analogy

- Plane Wave Ansatz : Assume a monochromatic solution:

ψ(x, t) = ei(kx−ωt),

with k = 2π
λ and ω = 2πf .

- Energy-Momentum Relation : Substitute E = ℏω and p = ℏk.
Hence,

ψ(x, t) = e
i
ℏ(px−Et).
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3. Postulating the Time-Dependent Schrödinger Equa-

tion

- Operator Correspondence :

E → iℏ
∂

∂t
, p⃗→ −iℏ∇.

In terms of components, p⃗ = (px, py, pz) with

px → −iℏ ∂
∂x
.

- Hamiltonian Formulation :

iℏ
∂

∂t
ψ(x, t) =

[
− ℏ2

2m
∇2 + V (x)

]
ψ(x, t).

4. Justifying the Equation

- Consistency with de Broglie Waves :

ℏωψ =

(
ℏ2k2

2m
+ V

)
ψ =⇒ E =

p2

2m
+ V.

- Probability Conservation : Recovers the continuity equation.

5. Stationary States and Time-Independent Equation

- Separation of Variables : Assume ψ(x, t) = ψ(x)e−iEt/ℏ:[
− ℏ2

2m
∇2 + V (x)

]
ψ(x) = Eψ(x).

6. Experimental Validation
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- Hydrogen Atom : Predicts quantized energy levels matching the

Balmer series.

- Tunneling Effect : Explains alpha decay and scanning tunneling

microscopy.

- Wave Packet Dynamics : Describes spreading consistent with

the uncertainty principle.

7. Limitations and Extensions

- Non-Relativistic : Fails at v ∼ c (requires Dirac equation).

- Multi-Particle Systems : Generalizes to ψ(x1, x2, . . . , xN , t).

- Probabilistic Interpretation : Born rule (|ψ|2) is a postulate.

8. Conclusion

The Schrödinger equation arises from:

1. Postulating wave-particle duality and probability interpretation.

2. Promoting classical observables to quantum operators.

3. Demanding consistency with energy-momentum relations.

4. Agreement with experimental results in quantum systems.

It serves as the foundational equation of non-relativistic quantum

mechanics, unifying particle behavior with wave dynamics.
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2 Solve the Schrödinger equation for
the deuteron

2.1 Reduction to the effective one-body prob-
lem

• The deuteron is a two-body system consisting of a proton and

a neutron. We first reduce it to an effective one-body problem

by introducing the reduced mass. The reduced mass µ of the

system is given by µ =
mpmn

mp+mn
, where mp is the mass of the

proton and mn is the mass of the neutron.

• The Schrödinger equation for a central potential V (r) in spher-

ical coordinates is

−ℏ2

2µ
∇2ψ + V (r)ψ = Eψ

• In spherical coordinates,

∇2 =
1

r2
∂

∂r
(r2

∂

∂r
) +

1

r2 sin θ

∂

∂θ
(sin θ

∂

∂θ
) +

1

r2 sin2 θ

∂2

∂φ2

• For a spherically symmetric potential V = V (r), the wave

function can be written as ψ(r, θ, φ) = R(r)Ylm(θ, φ), where

Ylm(θ, φ) are the spherical harmonics and R(r) is the radial
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part of the wave function. The Schrödinger equation then re-

duces to the radial equation:

−ℏ2

2µ

[
1

r2
d

dr
(r2
dR

dr
)− l(l + 1)

r2
R

]
+ V (r)R = ER

2.2 Choice of potential model

• A common choice is the square-well potential as a simple ap-

proximation. The square-well potential is given by

V (r) =

{
−V0, r < a

0, r ≥ a

• Inside the well (r < a), the radial Schrödinger equation be-

comes

−ℏ2

2µ

1

r2
d

dr
(r2
dR

dr
) +

ℏ2l(l + 1)

2µr2
R− V0R = ER

• Let u(r) = rR(r), then the equation simplifies to

−ℏ2

2µ

d2u

dr2
+

[
ℏ2l(l + 1)

2µr2
− V0

]
u = Eu

• The general solution for l = 0 (the ground state is usually

l = 0 for the deuteron) inside the well is u(r) = A sin(kr) +

B cos(kr), where k =
√

2µ(V0+E)
ℏ2 .
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• Outside the well (r ≥ a), the equation is

−ℏ2

2µ

d2u

dr2
+

ℏ2l(l + 1)

2µr2
u = Eu

• For l = 0, appropriate for the deuteron ground state, the gen-

eral solution is u(r) = Ce−κr + Deκr, where κ =
√
−2µE

ℏ2 .

Since the wave function must be finite as r → ∞, we set

D = 0.

2.3 Applying boundary conditions

• We need to apply the boundary conditions at r = a. The wave

function and its derivative must be continuous at r = a.

• Continuity of the wave function: A sin(ka) + B cos(ka) =

Ce−κa.

• Continuity of the derivative: k[A cos(ka)−B sin(ka)] = −κCe−κa.

• By solving these equations simultaneously, we can find the en-

ergy eigenvalues E and the constants A, B, and C.

• Eliminating A, B, and C between these two equations, we

obtain the transcendental equation for the eigenvalues:

k cot(ka) = −κ.
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Substituting k =
√

2µ(V0+E)
ℏ2 and κ =

√
−2µE

ℏ2 into the above

equation, we can solve for E numerically to find the bound-state

eigenvalues of the square-well potential for the deuteron-like system.

For the deuteron, the experimental data show that there is only

one bound state with a binding energy Eb = 2.225MeV. According

to the model, the bound-state energy E = −Eb. When a ≈ 1.4 fm,

the above calculation yields V0 ≈ 35MeV.

Another more realistic potential model is the Yukawa potential

V (r) = −V0 e
− r
a

r , which is more in line with the nature of the nuclear

force. Solving the Schrödinger equation with the Yukawa potential is

more complicated and usually requires numerical methods or approx-

imation techniques such as the variational method or perturbation

theory.

2.4 The role of Reduced Mass

The reduced mass accounts for the relative motion of two interact-

ing particles. It effectively transforms the two-body problem into a

single-particle problem with mass µ, simplifying the solution of the

Schrödinger equation. In the deuteron:

• The proton and neutron orbit their common center of mass.

• The reduced mass captures the combined inertia of both par-

ticles, reflecting how each particle ”feels” the other’s motion.
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• It plays a critical role in determining the relationship between

the potential depth V0 and the observed binding energy Eb.

The reduced mass µ in a two-body system (e.g., proton-neutron

in the deuteron) is defined as:

µ =
mpmn

mp +mn

wheremp ≈ 938.27MeV/c2 (proton mass) andmn ≈ 939.57MeV/c2

(neutron mass). For the deuteron, since mp ≈ mn, we approximate

µ ≈ mp

2 ≈ 469MeV/c2.
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3 Schrödinger equation and transition
rates

The Schrödinger equation predicts the energy transition rate between

atomic orbitals using time-dependent perturbation theory (also known

as Fermi’s Golden Rule). For a hydrogen atom transitioning from

orbital n = 2 to n = 1 , the steps involve solving the time-dependent

Schrödinger equation under the influence of an external perturbation

(e.g., electromagnetic radiation). Here’s a detailed breakdown:

1. Setup: Time-Dependent Schrödinger Equation

The full Hamiltonian is split into a time-independent part ( H0 )

and a time-dependent perturbation ( H ′(t) ):

iℏ
∂

∂t
ψ(t) = [H0 +H ′(t)]ψ(t).

For hydrogen, H0 describes the Coulomb interaction between the

electron and proton. The perturbation H ′(t) typically represents the

interaction with electromagnetic radiation (e.g., a photon field).

2. Perturbation Theory and Transition Probability

Assuming the perturbation is weak and short-lived, the transition

probability Pi→f from an initial state |i⟩ (e.g., n = 2 ) to a final state

|f⟩ (e.g., n = 1 ) is approximated by Fermi’s Golden Rule:

Pi→f =
2π

ℏ
|⟨f |H ′|i⟩|2ρ(Ef),
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where:

- ⟨f |H ′|i⟩ is the transition matrix element (integral of H ′ over

the initial and final wavefunctions).

- ρ(Ef) is the density of states at energy Ef .

3. Applying to Hydrogen Atom Transitions

For the n = 2 → n = 1 transition:

a. Wavefunctions of Initial and Final States

The stationary states of hydrogen are given by the Schrödinger

equation solutions:

ψnlm(r, θ, ϕ) = Rnl(r)Ylm(θ, ϕ),

whereRnl(r) is the radial wavefunction and Ylm(θ, ϕ) is the spher-

ical harmonic.

For n = 2, possible states are 2s(l = 0) and 2p(l = 1). For

n = 1, only 1s(l = 0) exists.

Selection Rules: Transitions are allowed only if ∆l = ±1 and

∆m = 0,±1. Thus, 2p → 1s is allowed, but 2s → 1s is forbidden

(electric dipole transition).

b. Transition Matrix Element

The perturbation H ′ for electromagnetic radiation is often ap-

proximated by the electric dipole interaction:

H ′ = −er · E(t),
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whereE(t) is the electric field of the radiation. Assuming monochro-

matic radiation with frequency ω, the matrix element becomes:

⟨1s|H ′|2p⟩ = −eE0 ·
∫
ψ∗
1srψ2p d

3r.

This integral simplifies due to symmetry. For 2p→ 1s:∫
ψ∗
1sr cos θ ψ2pz d

3r ̸= 0,

where

ψ2pz ∝ re−r/(2a0) cos θ.

c. Calculating the Matrix Element

The radial integral involves R21(r) and R10(r):∫ ∞

0

r3R10(r)R21(r) dr =
256

243
a30,

where a0 is the Bohr radius. The angular integral gives∫
Y ∗
00 cos θ Y10 dΩ =

4π

3
.

Combining these, the matrix element squared is:

|⟨1s|H ′|2p⟩|2 = 4e2E2
0a

2
0

27
.

d. Density of States
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For photons,

ρ(Ef) =
V

(2πℏ)3
E2
f

c3
,

where V is the volume and c is the speed of light. However, in

practice, this is often combined with the Einstein coefficients or nor-

malized to the radiation intensity.

4. Final Transition Rate

Substituting into Fermi’s Golden Rule:

P2p→1s =
2π

ℏ
· 4e

2E2
0a

2
0

27
·

V E2
f

(2πℏ)3c3
.

For spontaneous emission (no external field), E2
0 is replaced by

the vacuum field fluctuations, leading to the Einstein A coefficient:

A2p→1s =
64π4e2

3ϵ0hc3
· 1

a30
·
(
∆E

h

)3

,

where ∆E = E2 − E1 =
3
4 × 13.6 eV.

5. Key Takeaways

- The Schrödinger equation provides the stationary states (ψnlm)

needed to compute transition matrix elements.

- Time-dependent perturbation theory links these states to tran-

sition probabilities via Fermi’s Golden Rule.

- Selection rules (derived from symmetry) determine which tran-

sitions are allowed.
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- For hydrogen, the 2p → 1s transition rate is experimentally

confirmed and matches predictions from this framework.

This approach extends to other atoms and molecules, forming

the basis for understanding spectroscopic line widths and radiative

decay processes.

3.1 The vacuum field fluctuations

The analytical expression for the vacuum field fluctuations driving

spontaneous emission arises from quantum electrodynamics (QED).

These fluctuations represent the quantum mechanical zero-point en-

ergy of the electromagnetic field and play a crucial role in inducing

transitions between atomic states. Here’s a breakdown of the key

equations:

- Vacuum Electric Field Fluctuations

In QED, the vacuum state of the electromagnetic field contains

fluctuating electric fields. The root-mean-square (RMS) electric field

Evac at frequency ω is given by:

⟨E2
vac⟩ =

ℏω3

4π2ϵ0c3
.

- This arises from summing the zero-point energy 1
2ℏω over all

electromagnetic modes and relating energy density u = 1
2ϵ0E

2 to the

mode density V k2dk
(2π)3

, where k = ω/c.
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3.1.1 Derivation of DOS

To derive the density of states (DOS) at energy E , denoted D(E) ,

we quantify the number of quantum states per unit energy interval

around E . Below is a step-by-step derivation for a free particle in

three dimensions (e.g., electrons in a metal), with generalizations for

other dimensions.

1. Basic Setup

- System: A particle confined to a cubic box of volume V = L3.

- Boundary Conditions: Periodic boundary conditions (Born-von

Karman), leading to discrete wavevectors k.

- Wavefunction: Plane wave

ψ(r) =
1√
V
eik·r,

where

k =

(
2πnx
L

,
2πny
L

,
2πnz
L

)
and nx, ny, nz ∈ Z.

2. Counting States in k -Space

- Volume per k -point:
(
2π
L

)3
.

- Total states in a spherical shell: For a wavevector magnitude k,

the number of states in dk is:

dN =
Volume of shell

(2π/L)3
=

4πk2dk

(2π/L)3
=
V k2dk

2π2
.
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- Spin Degeneracy: If particles have spin s, multiply by 2s + 1

(e.g., electrons: 2 ).

3. Convert to Energy Space

For a free particle, energy E = ℏ2k2
2m . Solve for k:

k =

√
2mE

ℏ2
.

Differentiate to relate dk to dE:

dk =
m

ℏ2k
dE =

√
2m

ℏ
· dE

2
√
E
.

Substitute dk into dN :

dN =
V

2π2

(
2mE

ℏ2

)
·
√
2m

ℏ
· dE

2
√
E
.

Simplify to get the density of states:

D(E) =
dN

dE
=

V

2π2

(
2m

ℏ2

)3/2√
E.

For electrons (spin-½), multiply by 2:

D(E) =
V m3/2

√
2π2ℏ3

√
E.

4. Key Dimensions

- 3D: D(E) ∝
√
E (as derived above).
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- 2D: D(E) = Am
2πℏ2 (constant, where A = L2 ).

- 1D: D(E) ∝ 1√
E
.

5. Physical Interpretation

- Free Particles: D(E) increases with
√
E, reflecting more avail-

able momentum states at higher energies.

- Interacting Systems: In crystals, D(E) depends on the band

structure E(k) , leading to features like van Hove singularities.

- Applications: Essential for calculating properties like heat ca-

pacity, electrical conductivity, and Fermi-Dirac distributions.

Example: Hydrogen Atom

For bound states (e.g., electrons in atoms), the density of states

is discrete:

D(E) =
∑
n

δ(E − En),

where

En = −13.6 eV

n2
.

3.1.2 DOS for photons

The density of states (DOS) for photons is derived similarly to free

particles but with key differences due to photons being massless

bosons with energy E = ℏω = ℏck, where ω is the angular fre-

quency, c is the speed of light, and k = |k| is the wavevector magni-

tude. Below is the result from adapting the previous derivation for

16



photons:

Photon Density of States

1. 3D Photons: The DOS per unit volume is:

D(ω) =
ω2

π2c3
.

- Units: Hz−1 ·m−3 .

2. Energy Representation:

Using E = ℏω, the DOS becomes:

D(E) =
E2

π2ℏ3c3
.

Key Differences from Free Particles

- Dispersion Relation:

• Free particles: E = ℏ2k2
2m → D(E) ∝

√
E.

• Photons: E = ℏck → D(E) ∝ E2.

- Spin Degeneracy: Photons have 2 polarization states (he-

licity ±1), so the result includes a factor of 2.

- Volume: The DOS per unit volume D(ω) is often used in

photon-related problems (e.g., blackbody radiation).

Example Application: Blackbody Radiation

The energy density u(ω) in thermal equilibrium is:

u(ω) =
ℏω3

π2c3
· 1

eℏω/(kBT ) − 1
,
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where D(ω) = ω2

π2c3
appears explicitly.
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