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1 Bohr’s Atomic Model and de Broglie’s
Matter Waves

1.1 Bohr’s Atomic Model (1913)

Niels Bohr proposed his atomic model to explain hydrogen’s stability

and discrete emission spectrum using three postulates:

• Quantization of Angular Momentum

L = mvr = nℏ (n = 1, 2, 3, . . . ),

where L is angular momentum, m is electron mass, v is orbital

velocity, r is orbital radius, n is the principal quantum number,

and ℏ = h/(2π).

- This ad hoc assumption enforced discrete orbits to avoid clas-

sical radiative collapse.

• Stationary Orbits and No Radiation - Electrons in

quantized orbits do not radiate energy despite acceleration

(contradicts classical electromagnetism). - Stability arises from

the quantum condition L = nℏ.

• Radiation During Transitions

Ephoton = ∆Eatom =
hc

λ
= En2 − En1.

- Explains hydrogen’s spectral lines (e.g., Balmer series).
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1.1.1 Predictions

Consider a scenario where a single electron orbits a nucleus contain-

ing Z protons.

- Orbital Radius

rn =
4πϵ0ℏ2

me2Z
n2 =

n2

Z
a0,

where the Bohr radius of Hydrogen atom (with atomic number Z =

1) for n = 1 is a0 = 0.529 Å = 0.529× 10−10 m.

- Energy Levels

En = − me4Z2

2ℏ2n2(4πϵ0)2
= −Z

2

n2
E0,

where the ionization energy of the Hydrogen atom is En = 13.6 eV.

- Speed of orbital electron

vn =
e2Z

4πϵ0ℏ
1

n
=
Z

n
αc ≡ Z

n
v0,

where the fine structure constant is

α ≡ e2

4πϵ0ℏc
≃ 1

137
.

Note that the orbital angular momentum Ln = mrnvn = nℏ, so
that for n = 1 and Z = 1,

v0 = αc, a0 =
ℏ
mv0

=
ℏ

mαc
, E0 =

1

2
m(αc)2.
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- An example of Lithium iron

Lithium (3Li) has an atomic number of 3. Hence, its nucleus has

3 protons. Lithium-7 has an atomic mass of 7. Given that its atomic

number is 3, there are 7 - 3 = 4 neutrons in its nucleus. Since atoms

are charge neutral, the 3Li atom has 3 electrons. Thus, the Lithium

(3Li++) iron has one electron.

1.1.2 Fine structure constant

The fine-structure constant (α) is a dimensionless fundamental con-

stant that characterizes the strength of electromagnetic interactions.

Its expression in terms of Planck’s constant (h) and the speed of light

(c) is:

α =
e2

4πε0
· 1

ℏc
,

where:

- e is the elementary charge,

- ε0 is the vacuum permittivity,

- ℏ = h
2π is the reduced Planck constant.

- Its current Value:

The latest CODATA (2018) recommended value of α is:

α ≈ 0.0072973525693 (approximately
1

137.035999206
).

Running coupling constant
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The fine-structure constant depends on energy in the context

of quantum field theory. This phenomenon is known as “running

coupling constants” and arises due to quantum corrections (virtual

particle-antiparticle pairs) modifying the effective strength of elec-

tromagnetic interactions at different energy scales.

In quantum electrodynamics (QED), the effective value of α in-

creases slightly with energy. This is because higher-energy interac-

tions probe closer to the bare electron charge, where the screening

effect of virtual electron-positron pairs is reduced.

α ∼ 1
137 at low energy scale (about zero), and it runs to about

1
128 at high energy scale (about 100 GeV).

Note that in terms of the absolute temperature Kelvin (K),

1 eV ∼ 104K, so 1GeV ∼ 1013K.

1.2 Comparison with de Broglie’s Theory

- Classical vs. Wave-Based - Bohr retained classical mechanics

with quantum constraints. - de Broglie replaced orbits with matter

waves and standing-wave conditions.

- Assumptions - Bohr’s L = nℏ lacked justification until de

Broglie linked it to electron wavelengths.

- Success/Limitations - Explained hydrogen spectrum but

failed for multi-electron atoms. - de Broglie provided a unifying

wave-particle duality framework.
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1.3 de Broglie’s Matter Wave Hypothesis

Louis de Broglie’s theory provided a wave-based explanation for

Bohr’s stationary orbits:

1. Matter Wave Hypothesis

λ =
h

p
(de Broglie wavelength),

where p = mv is electron momentum.

2. Stationary Orbits as Standing Waves

2πr = nλ (n = 1, 2, 3, . . . ).

3. Derivation of Bohr’s Quantization Rule

2πr = n · h

mv
⇒ mvr =

nh

2π
.

Since L = mvr:

L =
nh

2π
= nℏ.

4. Physical Interpretation - Standing waves require inte-

ger multiples of λ, preventing destructive interference. - Resolves

classical paradox of non-radiating electrons.

1.3.1 Key Contributions

- Unified particle and wave descriptions. - Provided theoretical jus-

tification for Bohr’s quantization. - Laid groundwork for wave me-

chanics.
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2 Phase velocity and group velocity

2.1 Wave packet

According to the superposition principle, the combination of two

plane waves can illustrate the distinction between phase velocity and

group velocity. Below is the detailed derivation:

2.1.1 The Superposition of Two Plane Waves

Consider two plane waves with wave vectors k1 and k2, angular fre-

quencies ω1 and ω2, and equal amplitude A. Their superposition

yields:

ψ(x, t) = Aei(k1x−ω1t) + Aei(k2x−ω2t). (1)

2.1.2 Simplification via Trigonometric Identities

Assume k1 ≈ k2 and ω1 ≈ ω2. Define average and difference quan-

tities:

kavg =
k1 + k2

2
, ∆k =

k1 − k2
2

, (2)

ωavg =
ω1 + ω2

2
, ∆ω =

ω1 − ω2

2
. (3)

Rewrite the wavefunction as:

ψ(x, t) = Aei(kavgx−ωavgt)
[
ei(∆kx−∆ωt) + e−i(∆kx−∆ωt)

]
. (4)
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Using eiθ + e−iθ = 2 cos θ, we obtain:

ψ(x, t) = 2A cos (∆kx−∆ωt) · ei(kavgx−ωavgt). (5)

2.1.3 Separating Envelope and Carrier

The superposed wave consists of:

• Carrier Wave: The high - frequency oscillation ei(kavgx−ωavgt),

with phase velocity:

vp =
ωavg

kavg
. (6)

• Envelope: The low - frequency modulation 2A cos (∆kx−∆ωt),

with group velocity:

vg =
∆ω

∆k
. (7)

2.1.4 Physical Interpretation

• Phase Velocity vp: The speed of individual wave crests/troughs,

describing phase propagation.

• Group Velocity vg: The speed of the wave packet (en-

ergy/information), defined by the derivative:

vg =
dω

dk
(in the limit ∆k → 0). (8)
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2.1.5 Examples: Non - Dispersive vs. Dispersive Me-

dia

• Non-Dispersive Media (e.g., electromagnetic waves

in vacuum): ω = ck, so vp = vg = c.

• Dispersive Media (e.g., light in glass): ω ̸= ck, leading

to vp ̸= vg.

2.1.6 Conclusion

By superposing two plane waves, we visually demonstrate the sep-

aration between phase velocity (carrier speed) and group velocity

(envelope speed). In dispersive media, these velocities differ; in non

- dispersive media, they coincide.

2.2 The comparison of electron and photon

Here’s a comparison table of phase velocity and group velocity for

non-relativistic and relativistic electrons (matter waves) and photons,

based on their dispersion relations:
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Property
Electron

Photon
Non-Rel. Rel.

Dispersion Relation ω = ℏk2
2m ω =

√
c2k2 +

(
mc2

ℏ
)2

ω = ck

Phase Vel. (vp =
ω
k
) vp =

ℏk
2m = v

2 vp = c
√

1 +
(
mc
ℏk
)2

vp = c

Group Vel. (vg =
dω
dk
) vg =

ℏk
m = v vg =

c2k
ω = c2

vp
vg = c

Key points vp < vg vp > c, vg < c vp = vg = c

Key Notes:

1. For non - relativistic electrons:

- Energy E = p2

2m, with p = ℏk and E = ℏω. Note that k = 2π
λ and

ω = 2πf.

- Phase velocity vp =
v
2

- Group velocity vg = v (matches classical velocity)

2. For relativistic electrons:

- Energy E =
√

(pc)2 + (mc2)2, with p = ℏk and E = ℏω.
- Phase velocity vp > c, but group velocity vg < c

- As k → ∞, vg → c

3. Photons in vacuum:

- Energy E = pc, with p = ℏk and E = ℏω.
- Perfect linear dispersion (ω ∝ k)

- No spreading of wave packets (non-dispersive)

4. Causality is preserved because energy/momentum propagate at

vg, not vp
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3 Gaussian Wave Packet Representa-
tion

A Gaussian wave packet can be expressed as a superposition of plane

waves through a Fourier transform. Here’s the mathematical formu-

lation:

3.1 Gaussian Wave Packet in Position Space

A Gaussian wave packet centered at position x0 with width σ is:

ψ(x) =

(
1

πσ2

)1/4

e
− (x−x0)

2

4σ2 eip0x/ℏ.

- p0: Central momentum of the wave packet. - The normalization

factor
(

1
πσ2

)1/4
ensures

∫∞
−∞ |ψ(x)|2dx = 1.

3.2 Superposition of Plane Waves

To represent ψ(x) as a superposition of plane waves eipx/ℏ, we use

the Fourier transform:

ψ(x) =
1√
2πℏ

∫ ∞

−∞
ϕ(p) eipx/ℏ dp,
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where ϕ(p) is the momentum-space wave function. For the Gaussian

wave packet, ϕ(p) is also Gaussian:

ϕ(p) =

(
2σ2

πℏ2

)1/4

e
−σ2(p−p0)

2

ℏ2 e−ipx0/ℏ.

3.2.1 Key Relationships

1. Widths in Position and Momentum Spaces:

Position uncertainty: ∆x = σ,

Momentum uncertainty: ∆p =
ℏ
2σ
,

Uncertainty relation: ∆x∆p =
ℏ
2
.

2. Plane Wave Superposition: The wave packet ψ(x) is

built by summing plane waves eipx/ℏ with weights ϕ(p), encoding

probability amplitudes for each momentum p.

3.2.2 Final Expression

Substituting ϕ(p) into the Fourier integral:

ψ(x) =
1√
2πℏ

(
2σ2

πℏ2

)1/4 ∫ ∞

−∞
e
−σ2(p−p0)

2

ℏ2 e−ipx0/ℏeipx/ℏ dp.

This simplifies to the original Gaussian wave packet in position space,

confirming equivalence.
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