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1 Derivation of the Schrodinger Equa-
tion

The Schrodinger equation emerges from unifying wave-particle dual-
ity with classical physics principles. Here’s the structured argument:
1. Physical Motivation: Wave-Particle Duality
- de Broglie Hypothesis : Particles exhibit wave-like behavior with
wavelength:

h
>\:_7
p

where p is momentum.

- Wave Function (1) : Describes quantum states, with [(z,t)[?
as the probability density.

- Probability Conservation : Governed by the continuity equation:

0. -
EM +V.-J=0,

where J = Z—ZN (V*Vp — YV h*).
2. Classical Wave Equation Analogy
- Plane Wave Ansatz : Assume a monochromatic solution:

w(ﬂﬁ, t) _ ez'(k‘x—wt)7

with £ = 2{ and w =2mf.
- Energy-Momentum Relation : Substitute £/ = hw and p = hk.

Hence, |
b, ) = kT,
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3. Postulating the Time-Dependent Schrodinger Equa-
tion
- Operator Correspondence :
E — 'ha ) — —1hV
1h—, —ihV.
or P
In terms of components, p’'= (p,, py, p.) with

0
r — —th—.
b " or
- Hamiltonian Formulation :
0 h?
h—(z,t) = | ——V*+V t).
(o) = | =4 V(o) ot
4. Justifying the Equation
- Consistency with de Broglie Waves :
h2k2 2
hwp = (——+V )y — E=2 1V
2m 2m
- Probability Conservation : Recovers the continuity equation.
5. Stationary States and Time-Independent Equation
- Separation of Variables : Assume (z,t) = tb(x)e " Ft/M;
h2
-V V@) vlo) = Bvlo).
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6. Experimental Validation
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- Hydrogen Atom : Predicts quantized energy levels matching the
Balmer series.

- Tunneling Effect : Explains alpha decay and scanning tunneling
MICTOSCOPY.

- Wave Packet Dynamics : Describes spreading consistent with
the uncertainty principle.

7. Limitations and Extensions

- Non-Relativistic : Fails at v ~ ¢ (requires Dirac equation).

- Multi-Particle Systems : Generalizes to ©¥(x1, xa, ..., TN, ).

- Probabilistic Interpretation : Born rule (|1)|?) is a postulate.

8. Conclusion

The Schrodinger equation arises from:
1. Postulating wave-particle duality and probability interpretation.
2. Promoting classical observables to quantum operators.
3. Demanding consistency with energy-momentum relations.
4. Agreement with experimental results in quantum systems.

It serves as the foundational equation of non-relativistic quantum
mechanics, unifying particle behavior with wave dynamics.



2.1

Solve the Schrodinger equation for
the deuteron

Reduction to the effective one-body prob-
lem

The deuteron is a two-body system consisting of a proton and

a neutron. We first reduce it to an effective one-body problem

by introducing the reduced mass. The reduced mass p of the

system is given by p = —2™ where m,, is the mass of the
mp+my’ P

proton and m,, is the mass of the neutron.

The Schrédinger equation for a central potential V () in spher-
ical coordinates is

h2v2 1% —F
_ﬂ Y+ V(rhy = Ey

In spherical coordinates,

, 10, ,0 1 0, 0 1 0
_ H—
v (sinf55) + r2 sin? § 02
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For a spherically symmetric potential V' = V(r), the wave
function can be written as ¥(r, 0, ¢) = R(r)Yi,(0, ¢), where
Yim (0, p) are the spherical harmonics and R(r) is the radial



2.2

part of the wave function. The Schrodinger equation then re-
duces to the radial equation:

_h_2 ii(TQdR) B [(1+1)
2 | r2dr  dr r2

}4+VMR—ER

Choice of potential model

A common choice is the square-well potential as a simple ap-
proximation. The square-well potential is given by

—W <
'wm{ 0 =a
0, r>a

Inside the well (r < a), the radial Schrodinger equation be-
comes

1 d AR R

- o7 ViR = ER

Let u(r) = rR(r), then the equation simplifies to

B h? d*u N R+ 1)
21 dr?

o —V()] u= Fu

The general solution for [ = 0 (the ground state is usually
[ = 0 for the deuteron) inside the well is u(r) = Asin(kr) +

B cos(kr), where k = w
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2.3

Outside the well (r > a), the equation is

B h* d*u N R+ 1)
241 dr? 24112

u= Fu

For [ = 0, appropriate for the deuteron ground state, the gen-

eral solution is u(r) = Ce™" + De"" where k = \/—2;‘;—2E.

Since the wave function must be finite as r — 00, we set
D =0.
Applying boundary conditions

We need to apply the boundary conditions at r = a. The wave
function and its derivative must be continuous at r = a.

Continuity of the wave function: Asin(ka) + Bcos(ka) =
Ce he,

Continuity of the derivative: k|A cos(ka)—Bsin(ka)] = —xkCe™",

By solving these equations simultaneously, we can find the en-
ergy eigenvalues E and the constants A, B, and C.

Eliminating A, B, and C between these two equations, we
obtain the transcendental equation for the eigenvalues:

k cot(ka) = —k.



Substituting k£ = W and Kk = \/—Zg—QE into the above

equation, we can solve for E numerically to find the bound-state
eigenvalues of the square-well potential for the deuteron-like system.

For the deuteron, the experimental data show that there is only
one bound state with a binding energy Ej = 2.225 MeV. According
to the model, the bound-state energy £ = —FEj,. When a ~ 1.4fm,
the above calculation yields V) ~ 35 MeV.

Another more realistic potential model is the Yukawa potential
V(r) = =V, which is more in line with the nature of the nuclear
force. Solving the Schrodinger equation with the Yukawa potential is
more complicated and usually requires numerical methods or approx-
imation techniques such as the variational method or perturbation
theory.

2.4 The role of Reduced Mass

The reduced mass accounts for the relative motion of two interact-
ing particles. It effectively transforms the two-body problem into a
single-particle problem with mass g, simplifying the solution of the
Schrodinger equation. In the deuteron:

e The proton and neutron orbit their common center of mass.

e The reduced mass captures the combined inertia of both par-
ticles, reflecting how each particle "feels” the other’s motion.



e [t plays a critical role in determining the relationship between
the potential depth V;; and the observed binding energy FEj.

The reduced mass p in a two-body system (e.g., proton-neutron
in the deuteron) is defined as:

myMmy,

M_mp—l—mn

where m,, & 938.27 MeV /c? (proton mass) and m,, & 939.57 MeV /¢?
(neutron mass). For the deuteron, since m, & my,, we approximate
p LA 469 MeV /2.



