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1 Derivation of the Schrödinger Equa-
tion

The Schrödinger equation emerges from unifying wave-particle dual-

ity with classical physics principles. Here’s the structured argument:

1. Physical Motivation: Wave-Particle Duality

- de Broglie Hypothesis : Particles exhibit wave-like behavior with

wavelength:

λ =
h

p
,

where p is momentum.

- Wave Function (ψ) : Describes quantum states, with |ψ(x, t)|2
as the probability density.

- Probability Conservation : Governed by the continuity equation:

∂

∂t
|ψ|2 +∇ · J⃗ = 0,

where J⃗ = ℏ
2mi (ψ

∗∇ψ − ψ∇ψ∗).

2. Classical Wave Equation Analogy

- Plane Wave Ansatz : Assume a monochromatic solution:

ψ(x, t) = ei(kx−ωt),

with k = 2π
λ and ω = 2πf .

- Energy-Momentum Relation : Substitute E = ℏω and p = ℏk.
Hence,

ψ(x, t) = e
i
ℏ(px−Et).
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3. Postulating the Time-Dependent Schrödinger Equa-

tion

- Operator Correspondence :

E → iℏ
∂

∂t
, p⃗→ −iℏ∇.

In terms of components, p⃗ = (px, py, pz) with

px → −iℏ ∂
∂x
.

- Hamiltonian Formulation :

iℏ
∂

∂t
ψ(x, t) =

[
− ℏ2

2m
∇2 + V (x)

]
ψ(x, t).

4. Justifying the Equation

- Consistency with de Broglie Waves :

ℏωψ =

(
ℏ2k2

2m
+ V

)
ψ =⇒ E =

p2

2m
+ V.

- Probability Conservation : Recovers the continuity equation.

5. Stationary States and Time-Independent Equation

- Separation of Variables : Assume ψ(x, t) = ψ(x)e−iEt/ℏ:[
− ℏ2

2m
∇2 + V (x)

]
ψ(x) = Eψ(x).

6. Experimental Validation
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- Hydrogen Atom : Predicts quantized energy levels matching the

Balmer series.

- Tunneling Effect : Explains alpha decay and scanning tunneling

microscopy.

- Wave Packet Dynamics : Describes spreading consistent with

the uncertainty principle.

7. Limitations and Extensions

- Non-Relativistic : Fails at v ∼ c (requires Dirac equation).

- Multi-Particle Systems : Generalizes to ψ(x1, x2, . . . , xN , t).

- Probabilistic Interpretation : Born rule (|ψ|2) is a postulate.

8. Conclusion

The Schrödinger equation arises from:

1. Postulating wave-particle duality and probability interpretation.

2. Promoting classical observables to quantum operators.

3. Demanding consistency with energy-momentum relations.

4. Agreement with experimental results in quantum systems.

It serves as the foundational equation of non-relativistic quantum

mechanics, unifying particle behavior with wave dynamics.
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2 Solve the Schrödinger equation for
the deuteron

2.1 Reduction to the effective one-body prob-
lem

• The deuteron is a two-body system consisting of a proton and

a neutron. We first reduce it to an effective one-body problem

by introducing the reduced mass. The reduced mass µ of the

system is given by µ =
mpmn

mp+mn
, where mp is the mass of the

proton and mn is the mass of the neutron.

• The Schrödinger equation for a central potential V (r) in spher-

ical coordinates is

−ℏ2

2µ
∇2ψ + V (r)ψ = Eψ

• In spherical coordinates,

∇2 =
1

r2
∂

∂r
(r2

∂

∂r
) +

1

r2 sin θ

∂

∂θ
(sin θ

∂

∂θ
) +

1

r2 sin2 θ

∂2

∂φ2

• For a spherically symmetric potential V = V (r), the wave

function can be written as ψ(r, θ, φ) = R(r)Ylm(θ, φ), where

Ylm(θ, φ) are the spherical harmonics and R(r) is the radial
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part of the wave function. The Schrödinger equation then re-

duces to the radial equation:

−ℏ2

2µ

[
1

r2
d

dr
(r2
dR

dr
)− l(l + 1)

r2
R

]
+ V (r)R = ER

2.2 Choice of potential model

• A common choice is the square-well potential as a simple ap-

proximation. The square-well potential is given by

V (r) =

{
−V0, r < a

0, r ≥ a

• Inside the well (r < a), the radial Schrödinger equation be-

comes

−ℏ2

2µ

1

r2
d

dr
(r2
dR

dr
) +

ℏ2l(l + 1)

2µr2
R− V0R = ER

• Let u(r) = rR(r), then the equation simplifies to

−ℏ2

2µ

d2u

dr2
+

[
ℏ2l(l + 1)

2µr2
− V0

]
u = Eu

• The general solution for l = 0 (the ground state is usually

l = 0 for the deuteron) inside the well is u(r) = A sin(kr) +

B cos(kr), where k =
√

2µ(V0+E)
ℏ2 .
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• Outside the well (r ≥ a), the equation is

−ℏ2

2µ

d2u

dr2
+

ℏ2l(l + 1)

2µr2
u = Eu

• For l = 0, appropriate for the deuteron ground state, the gen-

eral solution is u(r) = Ce−κr + Deκr, where κ =
√
−2µE

ℏ2 .

Since the wave function must be finite as r → ∞, we set

D = 0.

2.3 Applying boundary conditions

• We need to apply the boundary conditions at r = a. The wave

function and its derivative must be continuous at r = a.

• Continuity of the wave function: A sin(ka) + B cos(ka) =

Ce−κa.

• Continuity of the derivative: k[A cos(ka)−B sin(ka)] = −κCe−κa.

• By solving these equations simultaneously, we can find the en-

ergy eigenvalues E and the constants A, B, and C.

• Eliminating A, B, and C between these two equations, we

obtain the transcendental equation for the eigenvalues:

k cot(ka) = −κ.
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Substituting k =
√

2µ(V0+E)
ℏ2 and κ =

√
−2µE

ℏ2 into the above

equation, we can solve for E numerically to find the bound-state

eigenvalues of the square-well potential for the deuteron-like system.

For the deuteron, the experimental data show that there is only

one bound state with a binding energy Eb = 2.225MeV. According

to the model, the bound-state energy E = −Eb. When a ≈ 1.4 fm,

the above calculation yields V0 ≈ 35MeV.

Another more realistic potential model is the Yukawa potential

V (r) = −V0 e
− r
a

r , which is more in line with the nature of the nuclear

force. Solving the Schrödinger equation with the Yukawa potential is

more complicated and usually requires numerical methods or approx-

imation techniques such as the variational method or perturbation

theory.

2.4 The role of Reduced Mass

The reduced mass accounts for the relative motion of two interact-

ing particles. It effectively transforms the two-body problem into a

single-particle problem with mass µ, simplifying the solution of the

Schrödinger equation. In the deuteron:

• The proton and neutron orbit their common center of mass.

• The reduced mass captures the combined inertia of both par-

ticles, reflecting how each particle ”feels” the other’s motion.
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• It plays a critical role in determining the relationship between

the potential depth V0 and the observed binding energy Eb.

The reduced mass µ in a two-body system (e.g., proton-neutron

in the deuteron) is defined as:

µ =
mpmn

mp +mn

wheremp ≈ 938.27MeV/c2 (proton mass) andmn ≈ 939.57MeV/c2

(neutron mass). For the deuteron, since mp ≈ mn, we approximate

µ ≈ mp

2 ≈ 469MeV/c2.
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