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1 Orbitals

In atomic physics, the number of electrons that can fill each orbital

is determined by the Pauli exclusion principle, which states that no

two electrons in an atom can have the same set of quantum numbers.

Each orbital is defined by the quantum numbers n, l, and ml, and

can hold a maximum of 2 electrons with opposite spins (governed by

the spin quantum number ms = +1
2 or −

1
2).

Key Steps to Determine Orbitals and Electrons for,

for example, n = 3 :

1. Principal Quantum Number (n) Defines the electron shell.

For n = 3, the possible values of the angular momentum quantum

number (l) are 0, 1, 2 (corresponding to s, p, d subshells).

2. Orbitals per Subshell (l)

- For l = 0 (s subshell): Magnetic quantum number ml = 0 → 1

orbital.

- For l = 1 (p subshell): ml = −1, 0,+1 → 3 orbitals.

- For l = 2 (d subshell): ml = −2,−1, 0,+1,+2 → 5 orbitals.

Total orbitals for n = 3: 1 + 3 + 5 = 9 orbitals.

Note: The total number of orbitals for a given principle value n

is n2.

3. Electrons per Orbital

Each orbital can hold 2 electrons (spin - up and spin - down).

4. Total number of electrons
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For n = 3: 9 orbitals× 2 electrons/orbital = 18 electrons.

Common Confusion: Orbitals vs. Electrons

- Orbitals:

Defined by n, l, ml. For n = 3, there are 9 orbitals (not 18).

- Electrons:

Each orbital holds 2 electrons (due to spin), so the n = 3 shell can

hold 18 electrons in total.

This follows directly from the quantum numbers and the Pauli

exclusion principle, which limits each orbital to two electrons with

opposite spins.

• The theoretical basis for Pauli exclusion principle is the require-

ment that the total wavefunction of electrons ( spin-12 fermions)

has to be totally antisymmetric under the exchange of any two

electrons.

• Consider two electrons in a system. If the two electrons were

in the same quantum state (i.e., having the same set of quan-

tum numbers which are n, l, ml, and ms), then the spatial

part of the wavefunction and the spin part of the wavefunction

would be symmetric under the exchange of the two electrons.

However, since the total wavefunction (which is a product of

the spatial and spin wavefunctions) must be antisymmetric for

fermions, this would lead to a contradiction. So, the two elec-

trons cannot be in the same quantum state, which limits each

orbital to two electrons with opposite spins.
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2 Electron spin

The necessity of an inhomogeneous magnetic field in the Stern-Gerlach

experiment arises from the interplay between quantum spin and clas-

sical electromagnetism. Here’s a detailed mathematical derivation

that uncovers the underlying physics:

2.1 Magnetic Moment-Spin Relationship

The electron’s intrinsic spin angular momentum S generates a mag-

netic dipole moment µ:

µ = − e

me
S (classical approximation)

where e is the electron charge and me its mass.

2.2 Potential Energy in a Magnetic Field

The interaction energy between µ and a magnetic field B is:

U = −µ ·B =
e

me
S ·B

In quantum mechanics, S is an operator. For a spin-1/2 system, the

z-component of spin Sz has eigenvalues ±ℏ/2. Substituting Sz, the

energy becomes:

U =
e

me

(
±ℏ
2

)
Bz = ± eℏ

2me
Bz
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This predicts two distinct energy states—spin-up (+) and spin-down

(−).

2.3 Force from Field Gradient

The force experienced by a magnetic dipole in a nonuniform field is:

F = −∇U =
e

me
(S · ∇)B

Assuming the magnetic field has a strong gradient in the z-direction

(∇B ≈ ∂Bz
∂z ẑ), the force simplifies to:

Fz =
e

me
Sz

∂Bz

∂z

Substituting Sz = ±ℏ/2:

Fz = ± eℏ
2me

∂Bz

∂z

Critical Insight:

• If ∂Bz
∂z = 0 (homogeneous field), Fz = 0 —no deflection occurs.

• Only an inhomogeneous field (∂Bz
∂z ̸= 0) creates a net force

proportional to spin projection, splitting the beam into two

paths.

Classical vs. Quantum Predictions
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• Classical Prediction: A continuous range of magnetic mo-

ment orientations would produce a smeared distribution on the

detector.

• Quantum Prediction: Only two discrete deflections occur

due to quantized spin (Sz = ±ℏ/2).

2.4 Experimental Validation

Silver atoms (47Ag, with the electron configuration [Kr] 4d105s1) with

a single unpaired electron in the 5s orbital (L = 0), have total an-

gular momentum J = L+ S = 1/2. The force calculation confirms:

Fz = ± eℏ
2me

∂Bz

∂z

This splits the atomic beam into two distinct spots, as observed in

the experiment.

The inhomogeneous magnetic field is indispensable because it

introduces a position-dependent force proportional to the spin pro-

jection. Without this gradient (∇B = 0), the force vanishes, and

quantum spin effects cannot be observed. This experiment funda-

mentally links classical electromagnetism to quantum spin quantiza-

tion, cementing the role of spin as an intrinsic particle property.
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2.5 Contribution from a closed shell

The contribution of a closed shell (completely filled electron shell) to

the total spin angular momentum of an atom is zero. Here’s why:

1. Electron Spin in Closed Shells:

- In a closed shell (e.g., a fully occupied s, p, d, or f subshell),

electrons are paired in atomic orbitals. Each orbital holds two elec-

trons with opposite spins (spin quantum numbers ms = +1/2 and

ms = −1/2 ).

- The spins of these paired electrons cancel each other out (vector

sum of spins for each pair is zero). Since all orbitals in a closed shell

are fully occupied and paired, the total spin contribution from the

shell is zero.

2. Orbital Angular Momentum in Closed Shells:

- It’s worth noting that closed shells also have zero net orbital

angular momentum due to symmetry (e.g., in a p6 shell, the orbital

angular momentum vectors from each p orbital cancel out). However,

this is a separate property from spin.

3. Atomic Spin Origin:

- The total spin of an atom arises from unpaired electrons in open

shells (partially filled subshells). Closed shells, with all electrons

paired, do not contribute to the overall spin.

Example:

- For a noble gas like neon (Ne, with electron configuration [He]

2s22p6), all shells are closed. The total electron spin angular mo-
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mentum is zero.

- In contrast, an atom like oxygen (O, with electron configuration

[He] 2s22p4) has two unpaired electrons in the 2p subshell, so its

total spin is non-zero (spin quantum number S = 1 ).

Conclusion:

A closed electron shell contributes zero to the spin of an atom

because all electron spins within it are paired and cancel each other

out. The atom’s net spin comes exclusively from unpaired electrons

in open shells.
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3 Derivation of the Magnetic Dipole
Moment Generated by the Orbital
Angular Momentum of an Electron
in a Hydrogen Atom

To derive the magnetic dipole moment µ generated by the orbital

angular momentum of an electron in a hydrogen atom, we first treat

the electron’s orbital motion as a classical current loop and then

transition to the quantum mechanical description. The key steps are

as follows:

3.1 Classical Current Loop Model

An electron moving in a circular orbit of radius r with angular ve-

locity ω forms a closed current loop.

• Orbital period: T = 2π
ω

• Current: I = charge
period = −e

T = −eω
2π (the negative sign is due to

the electron charge −e)

• Area of the loop: A = πr2

The magnetic dipole moment for a current loop is given by:

µ = I ·A = I · (A n̂)
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where n̂ is the unit vector perpendicular to the loop (determined

by the right - hand rule for the current direction). For an electron,

since it is negatively charged, the current direction is opposite to

its motion, so n̂ is opposite to the direction of the orbital angular

momentum.

3.2 Relation to Orbital Angular Momentum

The classical orbital angular momentum is:

L = r × p = mr × v = mr2ω n̂

Solving for ω:

ω =
L

mr2

Substituting ω into the expression for the current I :

I =
−e

2π
· L

mr2
=

−eL

2πmr2

The magnetic dipole moment becomes:

µ = I · πr2 n̂ =
−eL

2πmr2
· πr2 n̂ =

−e

2m
L

Since L = mr2ω n̂, the direction of µ is opposite to L (due to the

negative charge −e), so:

µ = − e

2m
L
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3.3 Quantum Mechanical Generalization

In quantum mechanics, the orbital angular momentum is an operator

L̂ = r̂ × p̂, where p̂ = −iℏ∇ is the momentum operator. The

magnetic dipole moment operator becomes:

µ̂ = − e

2m
L̂

3.3.1 Key Constant: Bohr Magneton

The proportionality constant eℏ
2m is a fundamental unit of magnetic

moment called the Bohr magneton (µB):

µB =
eℏ
2m

≈ 9.274× 10−24 J/T

Using µB, the orbital magnetic dipole moment can be written as:

µ̂ = −µB

ℏ
L̂

• The derivation assumes that the electron moves in a circular

orbit, and the classical current loop approximation holds.

• This result is valid for any charged particle with orbital angular

momentum (not just electrons in a hydrogen atom), but for

electrons, the negative sign indicates that the magnetic moment

is antiparallel to the angular momentum (due to their negative

charge).
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4 Summary

The magnetic dipole moment due to the electron’s orbital angular

momentum in a hydrogen atom is:

µ = − e

2m
L

This relationship connects the classical picture of orbital motion to

quantum mechanics, with the Bohr magneton µB serving as the nat-

ural unit for atomic magnetic moments.
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