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1 Pauli Exclusion Principle and the
symmetry of the total wavefunction

Regarding the Pauli Exclusion Principle and the symmetry of the

total wavefunction for a system of two electrons (fermions), here’s a

detailed analysis:

1.1 Pauli Exclusion Principle and Antisym-
metry Requirement

The Pauli Exclusion Principle states that the total wavefunction of

a system of fermions (e.g., electrons) must be antisymmetric under

the exchange of any two particles. For two electrons, the total wave-

function is the product of the orbital (spatial) wavefunction (ψorbital)

and the spin wavefunction (ψspin):

ψtotal = ψorbital ⊗ ψspin.

For ψtotal to be antisymmetric, the product of the symmetries of

ψorbital and ψspin must be antisymmetric. This means: - If ψorbital is

symmetric (denoted S), then ψspin must be antisymmetric (denoted

A). - If ψorbital is antisymmetric (A), then ψspin must be symmetric

(S).
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1.2 Case of Two Electrons in Different States

Suppose one electron is in the ground state (|ϕ1⟩) and the other is

in an excited state (|ϕ2⟩), where |ϕ1⟩ ≠ |ϕ2⟩.
Orbital Wavefunction Symmetry The orbital wave-

function for two distinguishable states can be either: -

Symmetric:

ψsym
orbital =

1√
2
(|ϕ1⟩1|ϕ2⟩2 + |ϕ2⟩1|ϕ1⟩2) ,

- Antisymmetric:

ψasym
orbital =

1√
2
(|ϕ1⟩1|ϕ2⟩2 − |ϕ2⟩1|ϕ1⟩2) .

Spin Wavefunction Symmetry For two electrons, the spin

wavefunctions are:

- Symmetric (triplet states, S = 1):

χsym =


| ↑↑⟩,
1√
2
(| ↑↓⟩ + | ↓↑⟩) ,

| ↓↓⟩.

- Antisymmetric (singlet state, S = 0):

χasym =
1√
2
(| ↑↓⟩ − | ↓↑⟩) .
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Allowed Combinations To satisfy the antisymmetry

of ψtotal:

1. Symmetric orbital + Antisymmetric spin:

ψtotal = ψsym
orbital ⊗ χasym (antisymmetric overall).

2. Antisymmetric orbital + Symmetric spin:

ψtotal = ψasym
orbital ⊗ χsym (antisymmetric overall).

Forbidden Combinations - Symmetric orbital + Sym-

metric spin:

The total wavefunction would be symmetric (S ⊗ S = S), violating

the Pauli principle.

- Antisymmetric orbital + Antisymmetric spin: The total wavefunc-

tion would be symmetric (A ⊗ A = S), also violating the Pauli

principle.

1.3 Key Takeaway

Even when electrons occupy different states (ground and excited),

the Pauli Exclusion Principle still requires the total wavefunction to

be antisymmetric. This means:

- A state with a symmetric spin wavefunction (triplet) must have an

antisymmetric orbital wavefunction.

For example, it is possible to have the atomic states of helium as:

1s12s1 with L = 0,
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If S = 0, then J = 0, denoted as 11S0.

If S = 1, then J = 1, denoted as 23S1.

Hence, the lowest excited state is 23S1 and then comes 21S0. Here,

S⃗ = S⃗1 + S⃗2, etc.

The ground state is 1s11s1 with L = 0 and J = 0, denoted as 11S0.

Note that 13S1 is forbidden.

- A state with both symmetric spin and symmetric orbital wave-

functions is forbidden because it would result in a symmetric to-

tal wavefunction, contradicting the antisymmetry requirement for

fermions.

Analogy to Identical Particles The requirement arises be-

cause electrons are indistinguishable particles: their wavefunctions

must not distinguish between them. Antisymmetry ensures that

swapping electrons introduces a minus sign, which is characteristic

of fermions (via the spin-statistics theorem). This is distinct from

bosons (e.g., photons), which require symmetric wavefunctions.

In summary: The total wavefunction must be antisymmetric, and

states with symmetric spin and symmetric orbital wavefunctions are

not allowed.
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2 J-J Coupling in Heavier Atoms

In atomic physics, the dominance of J-J coupling (also known as

”jj coupling”) in heavier atoms arises from the relative strengths of

two key interactions: electrostatic repulsion between electrons (which

drives LS coupling, or Russell-Saunders coupling) and spin-orbit cou-

pling (which drives jj coupling). Here’s a detailed explanation:

2.1 Two Coupling Schemes: LS vs. JJ

2.1.1 LS Coupling (Russell-Saunders Coupling)

- Applies to light atoms (low atomic number, Z). - Electrons interact

primarily via electrostatic repulsion (Coulomb interaction), which is

the dominant force. - Orbitals of different electrons first combine to

form a total orbital angular momentum

L =
∑

li

and spins combine to form total spin

S =
∑

si

- L and S then couple to form total angular momentum

J = L + S
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2.1.2 JJ Coupling

- Applies to heavier atoms (high Z). - The spin-orbit interaction (a

relativistic effect) becomes stronger than electron-electron repulsion.

- For each electron, its orbital angular momentum li and spin si first

couple to form a single-electron total angular momentum

ji = li + si

- These ji then combine to form the total angular momentum

J =
∑

ji

2.2 Why Spin-Orbit Coupling Strengthens with
Z

The spin-orbit interaction energy is given by:

∆ESO ∝ Z4

n3l(l + 1)
(for hydrogen-like atoms)

where n is the principal quantum number and l is the orbital angular

momentum quantum number. Key reasons for its increase in heavy

atoms:

- Effective Nuclear Charge (Zeff): In heavy atoms, inner-

shell electrons are tightly bound, and outer electrons experience a

large Zeff due to incomplete shielding. This enhances the electromag-

netic interaction between the electron’s spin and its orbital motion

around the nucleus.
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- Relativistic Effects: Electrons in heavy atoms move at

speeds comparable to the speed of light (especially in inner shells),

making relativistic corrections to the electron’s mass and magnetic

moment significant. Spin-orbit coupling is a relativistic effect and

becomes stronger with increasing electron velocity.

-Proportionality to Z4: The interaction energy grows rapidly

with Z, surpassing the electron-electron repulsion energy (which

scales as ∼ Z for outer electrons in multi-electron atoms).

2.3 Competition Between Interactions

-For Light Atoms (Z small): Electron-electron repulsion (Coulomb

interaction) is the strongest force. It causes orbitals to couple first

into L and spins into S (LS coupling), as the energy splitting due to

Coulomb repulsion is much larger than spin-orbit splitting.

- For Heavy Atoms (Z large): Spin-orbit coupling overtakes

Coulomb repulsion as the dominant interaction. Each electron’s li
and si couple into ji first, and the weaker Coulomb interaction then

couples the ji into J (JJ coupling).

2.4 Mathematical Perspective: Hamiltonian
Terms

The total Hamiltonian for a multi-electron atom includes:

1. Coulomb Interaction (HCoulomb): Drives LS coupling, pro-
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portional to ∼ 1
rij

(electron-electron repulsion).

2. Spin-Orbit Interaction (HSO): Drives JJ coupling, propor-

tional to ∼ li · si, which increases with Z.

In heavy atoms, |HSO| > |HCoulomb| for outer electrons, so the

eigenstates are better described by jj coupling. In light atoms, |HCoulomb| ≫
|HSO|, so LS coupling is valid.

2.5 Example: Transition from LS to JJ Cou-
pling

- Light Atoms (e.g., Carbon, Z = 6): Terms like 3P0,
3P1,

3P2

(LS-coupled triplet states) are good approximations.

- Heavy Atoms (e.g., Lead, Z = 82): Outer electrons (e.g.,

6p2 configuration) form states like 3P1/2,3/2, where each electron’s ji
(e.g., p1/2 and p3/2) couple to form total J .
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3 Residual Electrostatic Energy in Quan-
tum Physics

In quantum physics, residual electrostatic energy refers to the re-

maining electron-electron interaction energy that persists after ac-

counting for the average Coulomb repulsion in multi-electron atoms.

For atoms with two valence electrons (e.g., helium or alkaline earth

metals), this residual energy plays a critical role in explaining the

splitting of spectral lines, particularly in the context of LS coupling

(Russell-Saunders coupling). Here’s a detailed breakdown:

3.1 Context of Two Valence Electrons

Atoms with two valence electrons (e.g., He,Be,Mg) exhibit spec-

tral lines that split into closely spaced components due to electron-

electron interactions. This splitting arises from two primary effects:

- Residual electrostatic energy (electron-electron repulsion beyond

the central field approximation).

- Spin-orbit coupling (relativistic interaction between electron spin

and orbital motion).

The residual electrostatic energy is distinct from spin-orbit cou-

pling and dominates the fine structure of spectral lines in lighter

atoms.
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3.2 Definition of Residual Electrostatic En-
ergy

Residual electrostatic energy is the non-averaged component of the

electron-electron Coulomb interaction that cannot be captured by

the central field approximation. In the central field model, each elec-

tron experiences an averaged potential from the nucleus and other

electrons, which simplifies the Hamiltonian. However, this approxi-

mation neglects the tensor component of the electron-electron repul-

sion, which depends on the relative orientation of the electrons’ spins

and orbits.

Mathematically, the residual electrostatic energy can be expressed

as:

Hresidual =
e2

4πϵ0

∑
i<j

1

rij
− average Coulomb term

where rij is the distance between electrons i and j. This term

splits energy levels with the same total orbital angular momentum

L and total spin S into different fine structure components (e.g.,
3P0,

3P1,
3P2 for L = 1, S = 1).

3.3 Role in Spectral Line Splitting

For two valence electrons, the residual electrostatic energy causes

term splitting within a given electron configuration (e.g., 1s2, 2s2, 2p2).

Key points include:
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- LS Coupling: The residual energy couples the electrons’ orbital

angular momenta (L1, L2) and spins (S1, S2) into total angular mo-

mentum L and S. The energy splitting depends on the relative

orientation of L and S (e.g., singlet vs. triplet states).

Example: In helium’s 2p2 configuration, the residual energy splits

the 3P term into three levels (3P0,
3P1,

3P2) and the 1D term into

one level (1D2). These splits manifest as closely spaced spectral lines

in emission or absorption spectra.

- Comparison to Spin-Orbit Coupling: While spin-orbit cou-

pling also causes fine structure splitting, it is a relativistic effect that

becomes significant in heavier atoms. Residual electrostatic energy

dominates in lighter atoms (e.g., helium).

3.4 Mathematical Formulation

In LS coupling, the residual electrostatic energy is often treated using

perturbation theory. The interaction Hamiltonian includes terms

like:

Hresidual ∝
∑
i<j

1

rij

[
3(si · rij)(sj · rij)

r2ij
− si · sj

]
where si and sj are electron spins, and rij is the vector between

electrons. This term depends on the relative orientation of spins and

orbital motion, leading to energy shifts proportional to L · S.

11



3.5 Experimental Evidence

The splitting of spectral lines due to residual electrostatic energy is

observed in experiments like:

- Optical spectroscopy: Fine structure in helium’s 2p → 1s

transition (e.g., the D-line in sodium).

- Electron paramagnetic resonance (EPR): Splitting of hy-

perfine lines in free radicals, where residual interactions modify en-

ergy levels.
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4 Selection rules for electric-dipole in-
duced transitions

Overview of Selection Rules for Electric Dipole Transi-

tions

In atomic physics, the selection rules for electric dipole-induced tran-

sitions in atoms arise from the requirement that the electric dipole

transition matrix element ⟨ψf |d̂|ψi⟩ (where d̂ = −er̂ is the dipole

operator) must be non-zero. These rules govern the allowed changes

in quantum numbers between initial (i) and final (f ) states of the

electron.

- Mathematically, the transition matrix element for a dipole tran-

sition is:

⟨ψfinal|Hdipole|ψinitial⟩ = ⟨χspin
final|χ

spin
initial⟩ · ⟨ϕ

orbital
final |Hdipole|ϕorbitalinitial ⟩

where χ and ϕ are spin and orbital wavefunctions, respectively.

For the matrix element to be non-zero, the spin overlap integral

⟨χfinal|χinitial⟩must be non-zero, which implies a set of selection rules,

as described below.

1. Principal Quantum Number (n)

There is no strict selection rule for n, but transitions are more prob-

able for small |∆n|.

∆n = nf−ni = any integer (though probabilities decrease for large |∆n|)
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2. Orbital Angular Momentum Quantum Number (l)

∆l = lf − li = ±1

- The Parity of the state (even/odd, determined by (−1)l) must

change. Hence, The orbital angular momentum must change by ±1.

Example: Transitions between s-orbitals (l = 0) and p-orbitals

(l = 1) are allowed (∆l = ±1), but transitions between s-orbitals

(∆l = 0) or p → d (∆l = +2) are forbidden for electric dipole

transitions.

3. Magnetic Quantum Number (ml)

∆ml = ml,f −ml,i = 0,±1

- The magnetic quantum number can change by 0, +1, or −1.

- The specific value depends on the polarization of the incident light:

• Linearly polarized light along the z-axis: ∆ml = 0.

• Circularly polarized light (right/left-handed): ∆ml = +1/− 1

(related to angular momentum conservation with the photon).

4. Spin Quantum Number (s) and Total Spin (S)

For single-electron atoms (or in the LS coupling scheme for multi-

electron atoms):

∆s = 0 and ∆S = 0
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- The spin quantum number of the electron (or total spin of the

atom) does not change.

- Electric dipole transitions are spin-allowed only if the total spin S

is conserved.

These selection rules are fundamental for interpreting atomic

spectra (e.g., allowed/forbidden lines in emission/absorption) and

are derived from the theory of angular momentum coupling and the

symmetry of the electromagnetic interaction.
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5 Selection Rules for Spin Transitions

In atomic physics, the allowedness of transitions involving changes

in total spin quantum number (∆S) is governed by selection rules

for electromagnetic dipole (E1) transitions, which are the dominant

mechanism for most atomic spectral lines. Here’s a breakdown of

why ∆S = 0 transitions are allowed while ∆S = 1 transitions are

forbidden:

5.1 Fundamental Symmetry of Electromag-
netic Interactions

The electromagnetic field (responsible for dipole transitions) inter-

acts with the orbital motion of electrons (via the electric dipole mo-

ment ∝ r) but does not directly couple to the electron spin (the spin

interacts weakly via magnetic dipole or higher-order interactions,

which are much less probable). The dipole interaction Hamiltonian

is:

Hdipole ∝ E ·
∑
i

eiri

where E is the electric field and ri is the position of electron i.

This operator does not involve spin operators (si), meaning it cannot

change the total spin state of the atom.
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5.2 Selection Rule for Total Spin (S): ∆S = 0

In the LS coupling scheme (valid for light atoms, where spin-orbit

coupling is weak), the total spin S is a ”good quantum number,”

meaning it is conserved during dipole transitions. Since the dipole

Hamiltonian does not act on spin, the initial and final states must

have the same total spin:

∆S = Sfinal − Sinitial = 0

- Allowed transition example: A singlet state (S = 0) can

transition to another singlet state (S = 0), e.g., 1S0 → 1P1.

- Forbidden transition example: A singlet state (S = 0)

cannot transition to a triplet state (S = 1), as this would require

∆S = 1, violating the selection rule.

5.3 Why ∆S = 1 Transitions Are Forbidden

A transition with ∆S = 1 would require the dipole operator to

change the total spin, but: - The dipole operator does not act on

spin states (it only acts on spatial/orbital wavefunctions).

- The spin wavefunction is therefore ”blind” to the dipole interaction,

meaning the spin part of the wavefunction must remain unchanged

during the transition.

- Mathematically, the transition matrix element for a dipole transi-
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tion is:

⟨ψfinal|Hdipole|ψinitial⟩ = ⟨χspin
final|χ

spin
initial⟩ · ⟨ϕ

orbital
final |Hdipole|ϕorbitalinitial ⟩

where χ and ϕ are spin and orbital wavefunctions, respectively.

For the matrix element to be non-zero, the spin overlap integral

⟨χfinal|χinitial⟩ must be non-zero, which requires Sfinal = Sinitial (i.e.,

∆S = 0).

5.4 Exceptions and Higher-Order Interactions

While ∆S = 1 transitions are forbidden for electric dipole (E1)

transitions, they can occur via magnetic dipole (M1) or electric

quadrupole (E2) transitions, which:

- Are weaker (typically ∼ 103 − –106 times less probable than E1

transitions).

- Involve spin-dependent interactions (e.g., M1 transitions couple to

the magnetic moment, which includes spin).

However, in most atomic spectroscopy (e.g., visible light transi-

tions), E1 transitions dominate, and ∆S = 1 transitions are effec-

tively forbidden.

5.5 Example: Helium Atom

In helium, the singlet-triplet gap (e.g., 1S0 ↔ 3S1) is a classic exam-

ple:
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- Transitions between singlet (S = 0) and triplet (S = 1) states

(∆S = 1) are electric dipole forbidden and are rarely observed in

optical spectra.

- Transitions within the same spin multiplicity (∆S = 0), like 1P1 →
1S0, are allowed and dominate the spectrum.
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