The Atomic states

Figure 8.9 Schematic diagram indicating the increasing fine-structure splitting due to different effects. This case is for an atom having two valence electrons, one in the 4*p* and the other in the 4*d* state. The energy is not to scale. *From R. B. Leighton*, Principles of Modern Physics, *New York: McGraw-Hill (1050)*, *b. 261*. *Used with harmingian*

Figure 8.13 The low-lying atomic states of helium are shown. The ground state $({}^{1}S_{0})$ is some 20 eV below the grouping of the lowest excited states. The level indicated by ${}^{3}P_{0,1,2}$ is actually three states $({}^{3}P_{0}, {}^{3}P_{1}, {}^{3}P_{2})$, but the separations are too small to be indicated.

25, is allowed because is and 25 are in different n shells, so that they are is distinguishable states. Two electrons 1525 $z_{0} = \sum_{n=1}^{\infty}$ =0, 52=7, its (T=0,1, 235

What are the possible energy states for atomic carbon?

Strategy The element carbon has two 2p subshell electrons outside the closed $2s^2$ subshell. Both electrons have

 $\ell = 1$, so we have L = 0, 1, or 2 using the LS coupling scheme. The spin angular momentum is S = 0 or 1.

25+1, L-T			Spatial (orbital) wave function antisymmet	
S	L	\sim J	Spectroscopic Notation	L , Symmetric
0	0	0	$\frac{{}^{1}S_{0}}{{}^{1}P_{1}} 5 = 0$	For fermions (such as electrons),
	2	2	D_2 Not anowed	Total wave function spatial orbital)
1	0	1	$(3S_1)$ S=1, L=0 Not allowed	D = (Sprinke func.) * (avande func.)
	$\frac{1}{2}$	$0, 1, 2 \\ 1, 2, 3$	$^{3}P_{0, 1, 2}$ $^{3}D_{1, 2, 3}$ $\overset{5}{=}$ Not allowed	d) = Ginti-Symmetric (Pauli Exclusion Principle)
				Require $(-1)^{S+1} \cdot (-1)^{L} = -1$