Special Relativity

$$\beta = \frac{\Gamma}{c}$$
speed

$$T = \frac{1}{\sqrt{1-\beta^2}} = \frac{1}{\sqrt{1-\frac{v^2}{c^2}}}$$
Lorentz gamma factor

Eo: rent energy

$$K = (T-1)E_0$$
: relativistic kinetic en.

$$E^2 = p^2c^2 + m_0^2c^4$$
 $E = \frac{B}{c}$

Relativistic velocity addition (in the longitudinal direction):

$$U = \frac{U + u'}{1 + \frac{Uu'}{C^2}}$$

$$B = \frac{B + \beta'}{1 + B\beta'}$$

Special Relativity 2.

Relativistic Doppler effect (in the longitudinal direction):

$$f_{\Lambda} = f_{0} \sqrt{\frac{C+\sigma}{c-\sigma}} = \sqrt{\frac{1+\beta}{1-\beta}}$$

$$f_{V} = f_{0} \sqrt{\frac{C-\sigma}{c+\sigma}} = \sqrt{\frac{1-\beta}{1+\beta}}$$

$$C = 3.10^{8} \text{ m/s} \quad (299,792,458.m/s)$$

$$C = 2.f$$

Thermodynamics 1.

Temperature scales:

$$T_{K} = T_{E} + 273.15$$

 $\left(T_{E} = \frac{5}{9}\left(T_{F} - 32\right); T_{F} = \frac{9}{5}T_{E} + 32\right)$

Thermal expansion:

$$\Delta L = \alpha \cdot L_0 \cdot \Delta T$$
: linear $\beta = 3\alpha$
 $\Delta V = \beta \cdot V_0 \cdot \Delta T$: volumetric $\beta = 3\alpha$

DT is in K or & NOT in F

Ideal gas law:

$$NR = Nk_B$$
 therefore $R = N_A \cdot k_B$

n: amount of substance in mol

N: number of atoms or molecules in 1

m: mass of one particle in kg

M: mass of one mole substance or molar mass in kg/mol

Thermodynamics 2.

STP: standard temperature and pressure:

$$p = 1atm = 101.3 kPa = 1.013 \times 10^5 Pa$$

If
$$n=1$$
 mod then $pV=nRT$ gives $V=0.0224$ moder volume

Kinetic theory:

$$V_{RMS} = \sqrt{\frac{3k_BT}{m}} = \sqrt{\frac{3RT}{M}}$$
} this formula

has always 3 in it, because:

Etranslation =
$$3 \cdot \frac{1}{2} k_B T = \frac{3}{2} k_B T$$

L x, y and z directions

But:

$$E = \frac{1}{2} k_B T$$
; $f = \begin{cases} 3 : \text{monoatomic} \\ 5 : \text{diatomic or linear} \\ 6 : \text{polyatomic} \end{cases}$

U=Eth = N. E = = NkBT = = nRT: internal or thermal energy of the gas containing N atoms or molecules.

Thermodynamics 3.

Heat:

$$Q=C\cdot\Delta T$$
; $C:$ heat capacity $C=\frac{C}{m}$
 $Q=c\cdot m\cdot\Delta T$; $c:$ specific heat

Phase transitions or transformations:

Heat conduction:

$$Q = k \cdot \frac{A}{L} \cdot \Delta T \cdot E$$
; $T_{low} = A \cdot A \cdot T_{high}$ Thigh $P = Q / E$; $\Delta T = T_{high} = T_{low}$

Heat radiation:

$$\lambda_{\text{max}} \cdot T = b$$
; $b = 2.898 \times 10^3 \text{ m·K}$

black-body:
$$a=1$$
 and $e=1$

(Heat convection: way too complicated Hot fluid rises.)

Thermodynamics 4.

First Law:
$$\Delta u = Q + W$$
 We gas = $-Q$ W is the work done ON the system (gas). Q is the heat transferred To the system (gas).

Second Law: Q < as: the entropy of a closed system cannot decrease.

Molar heats for ideal gases:

$$C_{V} = \frac{1}{2}R$$
; $C_{P} = \frac{f+2}{2}R = C_{V}+R$

Ideal Gas processes:

$$p_1V_1 = p_2V_2$$

$$\rightarrow$$
 isobaric: constant P
 $V_1/T_1 = V_2/T_2$

$$\rightarrow$$
 isochoric: constant $V \leftarrow > W = 0$
 $P_1/T_1 = P_2/T_2$

$$\rightarrow$$
 adiabatic: $Q=0 \iff$ constant S

$$p_1 V_1^T = p_2 V_2^T; T = C_p/C_v = \frac{f+2}{f}$$

(isocaloric, iso-entropic or isentropic)

Thermodynamics 5.

Heat engines

hot reservoir

QHV

Qc/

Qc/

Cold reservoir

refrigerators heat pump

TH hot reserv.

Win Qc

Tc cold reserv.

The efficiency:

The coefficient of performance:

Engine: $2 = \frac{W_{\text{out}}}{Q_{\text{H}}} = \frac{T_{\text{H}} - T_{\text{c}}}{T_{\text{H}}}$ $Q_{\text{H}} = \frac{T_{\text{H}} - T_{\text{c}}}{T_{\text{H}}}$ $Q_{\text{Car}} = \frac{Q_{\text{H}}}{Q_{\text{H}}} = \frac{T_{\text{H}} - T_{\text{c}}}{T_{\text{H}}}$

Refrigerator:

$$K = \frac{Q_c}{W_{in}} = \frac{|c|}{T_H - T_c}$$

 $K = \frac{Q_H}{W_{in}} = \frac{T_H}{T_{H} - T_{C}}$

Quantum Physics 1.

Black-body radiation:

Wien's displacement law:

Stefan - Boltzmann law:

$$P = 6EAT^4$$
; $0 \le E \le 1$: emissivity
 $E = 1$ for black body
 $E = 5.6705 \cdot 10^8 \frac{W}{W^2 K^4}$

Planck's radiation curve:

$$I_{n} = \frac{2\pi c^{2}h}{n^{5}} \cdot \frac{1}{e^{\frac{hc}{nk_{B}T}} - 1}$$

$$I_{f} = \frac{2\pi h}{c^{2}} \cdot \frac{h^{2}}{e^{\frac{hc}{k_{B}T}} - 1}$$

Key assumption: energy quantum:

$$\Delta E = h.f$$

$$-34$$

$$L \Rightarrow h = 6.6261.10 \text{ Js}$$
Planck constant

Quantum Physics 2.

Rydberg formula for the H-atom:

$$\frac{1}{2} = R_{H} \left(\frac{1}{N^{2}} - \frac{1}{k^{2}} \right) \qquad N = 1, 2, 3, 4, ...$$

$$k > N$$

$$k > N$$

$$R_{H} = 1.096776 \cdot 10^{7} 1/m$$

Einstein's formula for the photoelectric effect:

hf =
$$\varphi$$
 + eV_0 φ : work function
hf = φ + $\frac{1}{2}mv^2$ V_0 : stopping pot.

½mr²: kinetic energy of the photoelectron, small, only a couple of eV.

X-ray production by bremsstrahlung: $eV_0 = h \cdot f_{max} = \frac{hc}{\lambda_{min}}$ ($c = \lambda \cdot f$)

Compton-effect: Energy conservation:
$$E = MC + K$$

$$\Delta \lambda = \lambda' - \lambda = \frac{h}{MeC} \left(1 - \cos\Theta \right)$$

$$f = \frac{C}{\Delta}$$

Compton wavelength:

$$\lambda_c = \frac{h}{m_e c} = \frac{hc}{m_e c^2} = \frac{1240 \text{eVnm}}{511,000 \text{eV}} = 2.4263 \text{pm}$$

Quantum Physics 3.

Photon:

$$E = hf$$

$$C = \lambda f$$

$$E = hC$$

$$C = \lambda f$$

$$E = hC$$

$$D = h$$

$$E^{2} = p^{2}C^{2} \Rightarrow E = pC \Rightarrow p = E$$

De Broglie: electron wave/matter wave:

$$\lambda = \frac{h}{P}$$
: de Broglie wavelength

Braggis law:

$$n \cdot \lambda = 2d \cdot \sin\theta$$
 $n = 1, 2, 3, 4, ...$

Bohr model:

$$E_{n,z} = -\frac{z^2}{n^2} \cdot E_0$$
; $E_0 = 13.6 \text{ eV}$
 $r_{n,z} = \frac{n^2}{z} \cdot a_0$; $a_0 = 0.529 \text{ A}$
 $B_{n,z} = \frac{z}{n} \cdot a_0$; $a_0 = \frac{1}{137}$

Es: ionization energy of the Hydrogen atom

a.: Bohr radius

a : fine structure constant

Wave mechanics 1.

Schrödinger equation (time indep.):

$$-\frac{t^2}{2m}\cdot\frac{d^2\Psi(x)}{dx^2}+V(x)\cdot\Psi(x)=E\cdot\Psi(x)$$

EEIR: energy of the system

Normalization:

$$1 = \int S(x) dx = \int |Y|^2 dx$$

Probability density: S(x) = 14(x)12 Heisenberg Uncertainty Principle:

$$\Delta x \cdot \Delta p_x \geq \hbar/2$$

$$\Delta y \cdot \Delta p_y \ge t_1/2$$

$$\Delta z \cdot \Delta P_z \ge \pi/2$$

$$h = \frac{h}{2\pi}$$

Wave mechanics 2.

Infinite square well

One dimension:

$$Y_{n}(x) = \sqrt{\frac{2}{L}} \cdot \sin(\frac{n\pi x}{L}); \quad n = 1,2,3,...$$

$$E_{n} = n^{2} \frac{\pi^{2} h^{2}}{2mL^{2}} = n^{2} \cdot \frac{h^{2}}{8mL^{2}} = \kappa^{2} \cdot E_{1}$$

Three dimensions:

$$E_{n_{1},n_{2},n_{3}} = \frac{h^{2}}{8m} \left(\frac{n_{1}^{2}}{L_{1}^{2}} + \frac{n_{2}^{2}}{L_{2}^{2}} + \frac{n_{3}^{2}}{L_{3}^{2}} \right)$$

Simple Harmonic Oscillator:

$$V(x) = \frac{1}{2}kx^2$$
 (k: spring constant)
 $E_n = (n + \frac{1}{2})\hbar\omega = (n + \frac{1}{2})hf$; $n = 0,1,2,...$
 $E_0 = \frac{1}{2}\hbar\omega$: zero point energy

Hydrogen atom

shell	orbits	e	me	# of orbits	# of
N=1	15	0	O	1	2
L n=2	25 2p	01	0-1,0,1	134	8
M N=3	39P-d	012	0 -1,0, <u>1</u> -2,-1,0,1,2	435	18
N N=4	9 Q d q	りょいの	0 -1,0,1 -2,-1,0,1,2 -3,-2,-1,0,1,2,3	13/16	32
0 n=5	9 234 &	0-1234	0 -1,0,1 -2,-1,0,1,2 -3,-2,-1,0,1,2,3 -4,-3,-2,-1,0,1,2,3,4	135-9	50

$$N = 1,2,3,...$$
 (K,L,M,N,O,P...)
 $l = 0,1,2,...(n-1)$ (s,p,d,f,g,h...)
 $M_{\ell} = -l_{\ell}...,0,...$! #; (2l+1)
 $M_{S} = \pm \frac{1}{2}$
 $L = |\pm| = \sqrt{l(l+1)} \cdot h$
Shell n has n different subshells,
 n^{2} orbits and $2n^{2}$ electrons.

Spectroscopic symbols

n MLJ

N: principal quantum number (often dropped)

L: orbital angular momentum (S, P, D, F, G, H)

M: multiplicity of the state M = 2S + 1; S: spin q.n.

J: total angular momentum quantum number

Examples:

Hydrogen ground state:

125 or 25

Helium ground state:

15° 15° or 15°

Nuclear physics

Binding energy:

$$B(\frac{A}{z}X_{N}) = \left[Z \cdot M(\frac{1}{z}H) + N \cdot m_{N} - M(\frac{A}{z}X_{N})\right]C^{2}$$

$$1AMU = 1u = \frac{1}{12} M(\frac{12}{6}C_6)$$

Radioactivity: $N = N_0 \cdot e^{2t}$

$$N = N_0 \cdot e^{\lambda t}$$

$$N = N \cdot e^{-t/x}$$

$$N = N_0 \cdot e^{-\frac{1}{2}}$$

$$N = N_0 \cdot 2$$

$$R = \lambda \cdot N$$

$$R = R_0 \cdot e$$

$$R = R_{-} \cdot C$$

$$R = R_0 \cdot e^{-t/T_{1/2}}$$

$$R = R_0 \cdot 2^{-t/T_{1/2}}$$

$$R_{p} = \lambda \cdot N_{p}$$

$$\lambda = \frac{1}{7}$$
; $T_{1/2} = \ln 2 \cdot T$; $\ln 2 = 0.6931$

Q-value: initial minus final

mass-energy: Q = -B