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Newton's Laws

1.An object in motion with
constant velocity will
continue in its motion

<  unless acted upon by

g  some net external force.

2.The acceleration of a body is
proportional to the force and inversely
proportional to the mass of the body.
Mathematically,

F = ma



3.The force exerted by body 1 on body 2
is equal in magnitude and opposite in
direction to the force that body 2
exerts on body 1.

Fi1o0 = —F>q

This is often called the /aw of
action and reaction.

These laws can be used to derive the
consequences of classical mechanics.



Special relativity represents a new
kinematics that differs from Newtonian or
non-relativistic kinematics, but must
reduce to it under the right circumstances.

The 15T Law says something important
about Newtonian mechanics: The dynamics
doesn't change if one is at rest or moving
with constant velocity.
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The transformation that connects the
coordinates in the primed and unprimed
systems is

= —vt,y =y, =2t =t.

o X' = k'\’,}/’;}’, 2 =2

It then follows that the accelerations in
the two frames satisfy

d = (i,if,¥) = (&,4,5) = a

—

and F'=md is unchanged.



These transformations have a nice
property. If

/! / /t /

r' =x —v r = x — vt

then 2"/ =2z — (v + V)t =2 — V"¢

Consequently, successive transformations
along the x-axis can be related to the
initial transformation by merely adding
the velocities. Obviously, if v'=-v, then
"=z and we are back to where we
started.



This type of behavior qualifies these
symmetry transformations as a mathematical
group that has come to be known as the
Galilean group. Note that the behavior of
the coordinate transformations depends on
the equality ’=t.

Newtonian or Galilean Relativity




There is a notion of relative motion or
Galilean relativity in classical mechanics
and it relies on having a common time
for both frames.

Search for the Ether

In 1860's, Maxwell showed that his theory
of electromagnetism predicted light waves
that propagated with a velocity ¢ which
could be calculated. Since all known waves
propagated in a medium, the medium for
ight propagation, called the ether, was of
particular interest. 10




Albert Michelson (1852-1931)
devised an experiment to

detect the (stationary) ether
by using optical interference.

Mirror M2
L |

Ether drift

f —

Partially silvered

-— —

Monochromatic
light source

Optical path length €;

11



For the light transit with or against the
ether velocity, the light has velocity c+v
or c—v, and the total time taken is

A b1, 41 24 1
l_c—|—fulc—v— c \1—wv2/c?

When the light moves perpendicular to the
Earth's velocity, its velocity is \/c2 — v2 so
20, 0

5. 1
2 — 2 C \/1—1)2/02

to =
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The time difference for this configuration
1S

> ‘5 3
At =tr —t1 = —
27T (\/1,02/62 1’02/02)

Upon rotation by 90°, the time difference
1S

2 /5 A
At =t5 —t] ==
2 17 (12}2/c2 \/12}2/02)

The time delay between the two
configurations is then
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A ap = 2| T €1 4 4o
c|1—v2/c? \/1—2)2/02

If this is expanded in terms of v?/c?

2 2 w2 v2(81 + 45)
At — At = = (0147 —
c( 1+462) <02 202> c3

Using the Earth's velocity around the Sun
as 3x10* m/s, Michelson calculated a time
difference of 8x10-17 s that amounted to
0.04 of a fringe, something he could detect.
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The experiment was
performed and no
fringe shift was
detected. It was
later repeated in
Europe with the
same null result.

A third measurement using an apparatus
with much longer arms was performed at
Case University with Edward Morley, again
giving a null result reported in 1887. s



The Michelson-Morley result is clearly a
failure of the Galilean transformation and
the significance of this work was recognized
when Michelson was awarded the Nobel prize
in 1907.

This inability to detect the ether was a
serious problem. Many arguments were
advanced to explain the null result. The most
radical of these was proposed by FitzGerald
and Lorentz - the longitudinal beam was
somehow contracted by a factor
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\/1 — v?/c?.

This makes the time difference vanish

g2 [P/t b
c 1 —v2/c? \/1—1)2/(32

but seems ad hoc. However, it turns out
to be the correct idea.
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Special Relativity

Some 20 years after
Michelson's null
experiment, Einstein,
who claimed he was
unaware of this result,
reexamined the
transformation rules
with particular attention
to the behavior of light.



He reasoned that if the velocity of light
were a fixed constant then time should
transform because results judged to be
simultaneous in a stationary frame needn't

be so in a moving frame.
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Reconciling this observation led Einstein to
propose two postulates that are the
foundation on special relativity:

1. The Principle of Relativity: The laws of
physics are the same in all inertial
frames. There is no way to detect
absolute motion, and no preferred
inertial system exists.

2.The constancy of the speed of light:
Observers in all inertial systems
measure the same value for the speed
of light in a vacuum. 4




According to 2., if frames K and K’ have
their origins coincident at t=t'=0, and a
light pulse is emitted, both frames will
see a spherical wave with

22 4 2 + 22 = 242

33/2 _I_ y/2 + 2/2 — CQt/Q

The important thing about this set of
conditions is that t and t' are not equal.
What we need is a relation between the
primed and unprimed variables that
preserves these equations.




Section 2.4 of the text goes through the
steps of finding the necessary relations.
For our purposes, let's write down the
result and check that it works.

! = r—vt
\/1 v?/c?
y =y
Z/ — 2
i — t—uvxz/c?
V1—v2/c?

These are the Lorentz transformations.



First, note that under ordinary circumstances
v<<c and these relations reduce to the
Galilean transformation.

Second, for v a substantial fraction of c,
the factor

1
\/1 — v2/c?

becomes large.



1.0

= | ©

0.2 04 06 08
1
\/1 —v2/c? |

®w © @ N~ O ;
A 103108 d1ISIATIR]IY :

0
~



As a check,
w’2 4 y/2 4 2/2 - CQt/Q

(v(z — Bet))? + y? +
22 — 2 (y(t — Bzx/c))?
v2(1 — %) (2% — c*t?)
-|-y2 + 22

2 _|_y2_|_Z2 _ 242

$/2 _|_ y/2 _|_ Z/2 o C2t/2

The quantity
$2 _|_y2 + 22 o 62t2

is called an invariant of the theory. It has
the same value when calculated in any system.




Consequences of Special
Relativity

We now imagine two systems K and K'.
Each has its own measuring devices and
synchronized clocks.

Time Dilation:

In the unprimed system, Frank lights a
sparkler a holds it until it goes out. In the
primed system, Mary observes the start
of the burn and Melinda observes the end.
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The burn lasts t,—1; in system K. To find
-t in K, use
(to — t1) — v(xo — 1) /C?

\/1—1) /c?

Since x,=X;, the time interval in K', T, is

to —t7 =

T,
T = 0 =Ty

\/1 — v2/c?

where T=t,—t'; and the proper time is
TO: 1-2_1-1.
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Length Contraction:
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On the way to the mirror, the light pulse
travels /L
L + vty = cty P —tl: c~Vv

and, after ref@c’rnon it reaches the left
end of the rod, ’rmvelmg

L
L — vty = cto jb fZ:-Z—-fV

The total time for the round trip is
@ tl+t1=T — CE’U = C_|I:v — c(l—zfug/cz)
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But, T is related to the proper time T, as

T, 2L wher &
\/1—2)2/02 c\/l—v2/02 e

Cgmpar'ing these expressions gives

2 [ \/ 2, D L °

= L =1+/1—-ve/c“Lg == ~

T a( -%'t) : r )
This is just the FitzGerald-Lorentz
contraction factor that was suggested to

give a null result for the Michelson-
Morley experiment.
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Review

o xr — vt R t —vx/c?
\/1—’02/62 \/1—’02/02
1o
T = — = 7T{
\/1—1) /c




Addition of Velocities

The addition of velocities presents a
challenge in special relativity since the
Lorentz transformations imply that v<c.

We can calculate the velocities in the K
system by differentiating with respect
to t'. For x', the Lorentz transformation

gives

, dx’ (d:z: dt dt> Ug — V
u.,. — — — v —
e~ ar ~ "\dtay T ar /dt




To calculate the denominator, we can use
the relation between t' and t
dt’ ( dx

E =7y 1 _E?}/CQ) :’7(1 —’LL;U’U/CQ> .

The expression for v/, is
/ Uy — U

U —
v 1 — ugv/c?

This may be inverted to give
u’ (Y

XZ
1+ ulv/c?

(V%%
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v = 0.6¢, u'; = 0.99¢



uL, + v
1+ ulv/c?
0.99¢ + 0.6¢

1+ 0.99 x 0.6

Uy —

Unlike the transverse components y and z,
that are unchanged for motion in the x-
direction, the transverse velocities do
change.



dy’ _dydt  uy

/I
YW Gy T drdd  dil/dt
= Uy
7 (1 — ugv/c?)
Similarly,
/] Uz
uZ

B (1 — ugv/c?)

Suppose that the spaceship has the same
velocity 0.6¢, but fires at an object
moving in the y' direction. What velocity
does someone on the space station see?
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Solution

Here we need to calculate v.

1 1
— — = 1.25
K V1-v2/c? v/1-0.62

The two components of the velocity are
O+

Uy = — v = 0.6c¢

140 xwv/c?
0.99c¢

" 1.25(1 4 0.6 x 0)

— 0.792c¢




The magnitude of the velocity as seen in
the space ship is then

Ju2 4+ u2 4+ u2 = 1/0.62 + 0.7922 + 0%
0.994c

u



Tests of Special Relativity

In elementary particle physics, most
particles are unstable and decay into stable
final states. As a simple example, the ©°
meson decays into two photons. The natural
lifetime in the 1 system is 8.4x10-!* s.

In their rest system, the decay photons
are back-to-back and each has velocity c.

> & -
>0 + ¥
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The n%s are produced in high energy
collisions and have a velocity v when
observed in the lab. According to the
relativistic velocity transformation the
velocity u in this frame is

c + v

u = =c
1 4+ ve/c?

Thus, in an actual experiment, the
constancy of the velocity of light in
various frames can be verified.

11



Muon Decay

When cosmic rays strike the upper
atmosphere, charge pions are produced.
These decay predominantly into muons (u)
that are unstable. In their rest system,
they decay according to the exponential law

N(t') = N(0)e0-693¢(t1/2)

N(t") and N(O) are the number of muons
at t'=0 and t'=1". The constant t,,, is the
half life of the muon, t;,, = 1.52x10° s.

12
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If 1000 muons are detected on a 2000 m
mountain top, how many will be detected at
ground level if the muons travel at 0.98 ¢?

The muons decay in their rest frame,
where the time is t' and the location is
x'=0. In terms of the unprimed system,
t=yt', so our equation in the Earth system
1S

N(t) = N(0)e® 693t/ (@1 /2)

-(: \Mezcwy.
~ /\/(0)6 ,M
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In this system, t is just

2
g = 2000m _ oo« 1076
0.98¢

Since y in this case is 5, the number of
muons observed at ground level is

N

1000~ (0.693%6.80 10—6)/(5.0><1.52K10—6)

540
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From the muon's point of view, the
mountain looks shorter. It is contracted
by I
L'= —=400m

Y
and is coming toward the muon at 0.98c¢.
The muon calculates the time to reach
the ground as

v 400m

— — 1.36 x 10~ °5
0.98c¢
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Now, using t,,, = 1.52x10¢ s, the
number of muons arriving at ground
level is, again, 540.

o3t/ (Ty)
N= (o000 S_ / &

= 540

VQ\ (2) = 0. 5913
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