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Relativistic Momentum

We have determined how coordinates and
velocities transform under the constraints
of special relativity. Einstein's assertion
that all physical processes are the
indistinguishable in inertial frames implies
that we need to figure out how Newton's
mechanics fits into this scheme.

Newton's 2" Law can be written



In Galilean relativity, the relation between
momenta in frames moving with relative
velocity v along the x axis is

Py = Pz — U, Py = Py, Py = Pz

To retain the latter two relations, the

definition of the momentum must be more

complicated than p,=mu, since we know that
/ muy

mu, = :
71 —UU:B/CQ)

and, in general, these are not the same.




Now, we want the momentum to be in the
direction of the velocity, so it will look
something like

p=mf(u/c)u, u= \/u:% —I—ug —I—ug.

Then, the equality of the y-components
of the momentum means

mf(u/)u:/y = mf(u)uy.



The choice of f(u) must be such that f(u')
just cancels the extra factors in going
from u’, to u, and reproduces f(u). The f(u)
that does the job is

1
flu) =
\/1 —u?/c?
The transformation rule is
1 (11— vug/c?) 1

\/1—u’2/02 \/1—62 \/1—u2/02.



Thus, the definition

—

. mu
p:
\/1 —u?/c?

ensures that p',=p, and p',=p,. What happens
to the relation between p', and p, ?

mu’

\/1 — u’2/02
mJ/mmET) 1 (ug — v)
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or

) Mg mu
Py — 7
\/1—u2/(32 \/1—u2/62
me? v
— T | Pz
\/1—u2/0202

In terms of the variable cp,

cph, = v | cpa



This form shows that the quantity
2

mc
\/1 — u2/c2

enters the transformation of cp, in the
same way ct enters the transformation
of Xx.

' =~ (x — Bet) .



Furthermore, this expression has dimensions

of energy, so let's write
o2

\/l—u

To interpret this expression, assume u<<c
and expand.

1u? 1
E:mcz(l | ¢ | ...)zmcz+§mu2+....

2 c2



The right side is a constant, mc?, and the
Newtonian expression for the kinetic energy.
E is called the total energy consisting of the
rest energy, mc?, and the relativistic kinetic
energy, K, defined as

K = E — mc°.

The total energy E must transform like ct,
SO

E = v (E — Bepz) -
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To summarize, momentum and total

energy are
- 2

, mu B mc
P = , — -
\/1—u2/02 \/1—u2/02

From these equations, a number of useful
relations follow
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m2c?i 2 5 4

b. 02}5’2 + m2ct

= Fm-c
(1 —u2/c?)

_ m2c? — 52

(1 —w2/?)

More simply,

E = \/p262 + m2c?.



Energy Units

A very common energy unit is derived from
the kinetic energy acquired when a charge
q is accelerated by an voltage V. The
kinetic energy of an electron accelerated

by a potential difference of 1 volt is called
an electron volt (eV).

W = (1le)(1V)
1 eV

(1.602 x 1072 C)(1V)
1.602 x 10712 J.
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For example, the rest energy of a proton is

mpc? = (1.672 x 10727 kg)(3 x 108 m/s)?
1eV

1.602 x 1019 J

— 0.38 x 10%eV = 938 MeV.

— 1.50x 1010}

In these units, the proton mass is
mp = 938 MeV /c?.

We often use m, = 1GeV.
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Example

A proton has a kinetic energy of 5 GeV.
What are its total energy, momentum and
velocity?

a. E = K + mc® = 5000MeV + 938 MeV
= 5938 MeV.
b. pc = \/Ez—m C
= /(5938)2 — (938)2MeV
p = 5863 MeV/c.

15



o | &

pc 53863

E 5938

= 0.937.
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Further discussion - massless particles

We have established two important
relations between velocity, momentum and
energy.

E = \/p202 -+ m2ct and g %
C

What happens if m approaches 0?



From the energy relation

E — \/p262+0 = pc,

and from the relation determining u

u_pc_

— 1.
c pcC

Hence, we learn that massless particles
travel at the velocity of light.



Moreover, the energy and momentum of a
massless particle are related as

E
p=—.
C

The primary example of a massless particle
is the photon. This is not accidental. The
theory of electromagnetism contains a
symmetry that requires the photon to be
massless.



Doppler Shift
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Suppose and observer in system K views
light from a star that is receding with
velocity v. In a time T, the length of the

wave train is
L=cI'+vT = (c+v)T.

If there are n waves, the wavelength is
~ (c+0)T

mn

A

and the frequency f is



nc

f:X: (c+v)T

In the K system of the star, the number
of waves is n=f,T,, and the relation
between T and T, is

1= ~1p.

Using this to solve for n gives the
frequency change observed in system K.



_ JocT'/y \/1_52
(c+0)T (l-l-ﬁ)

1-3
¢1+6h°

Since Af = ¢, the observed wavelength
increases to compensate for the decrease

in the frequency and the light is red
shifted.
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Example:

The H, line of hydrogen in a star has a
wavelength of 656.4x10° m. What
wavelength will be observed on Earth if the
star is receding at p=0.5?

E_\/l—l—ﬁc
/ 1—-06Jo
. \/1+ﬁ

Solution:

A =




Putting in the numbers

1.
A = —5656.4><1o—9m
0.5

A = 1137.x 10 2m.
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Four vectors

We have seen that the expression

2t2 2 2 2

C —x° -y —z

IS invariant under the Lorentz
transformations

CU/ — ’7(37 o ﬁCt>7 y, — Y, Z/ — <, Ct/ — V(Ct o BZE)
What is interesting is that the expression
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E2 5 5 5

1S also invariant under the same Lorentz
transformation, since

/
EZ 1 n y y

5 —DPi — Py —P; = 7 Bpz)* —
C

2 ) 2 2
ol (px——py—pz
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There is a convenient way of expressing
this invariance. We can introduce a
generalization of the ordinary vector of
Newtonian mechanics that is called a 4
vector. For position and momentum, these
are defined by

2t = (ct,z,y,2) = (ct,T)
E E —
p'u — (;7p337py7p2) — (Za )

The scalar or dot product is defined as
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Using this notation, the statement that
a 4 vector is invariant under Lorentz
transformation reduces to

/ /! /I I __
r-x' =z, pPp =p-p.

Turning the argument around, we can use
the invariance of this scalar product to
derive the Lorentz transformation.

14



Because of the sign difference between
the time contribution and the space
contribution, the scalar product of x* with
itself can be positive, negative or zero.

a. For z-z > 0, x is said to be timelike.

b. For z-z < 0, x is said to be spacelike.

c. Forz-z = 0, x is said to be lightlike.
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Finally, since x* and p* are 4 vectors, their
scalar product is also invariant.

/1
T -p = xp.

From the forms of x* and p*, this is

—_ —

t'E' —rl.pl =tE — 7-p.
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More 4 vectors

From the form of p*, we have
pp=E2/c2 _ 52 = m2c2

so the momentum 4 vector for a particle
of mass m is timelike. As the mass of the
particle goes to zero, E goes to

E — |plc.



It then follows that

(171, P)
0.

pﬂ
p-p

We can then conclude that the momentum
4 vectors for physical particles satisfy

p-p > 0.



Example: Particle Collisions

The Tevatron at Fermilab studies the
collisions of protons and antiprotons with
energies of 1 TeV and opposite momenta.
The 4 momenta are

p" = (E/c,p), p" = (E/c,—D).
Their total momentum squared is

(p+p)-(p+ D) =4E%/c* = 4 TeV?/c.

(W% E=| Tev)



A collision with this much momentum can
probe a hypothetical particle of high mass@
If this particle is produced at rest, its |
momentum will be

DA (e T) PAF<E

Momentum conservation ’rh(en gives o
2 L MCz)l B 4 eV’
E's E — /\/\ C. - C'L. - —CE'

g(> Mc? ~ 2TeV.




As you may remember from mechanics,
head-on collisions of equal masses are the
most efficient way to transmit energy
because the center of mass is at rest. The
Tevatron makes use of this idea to optimize
its 'mass reach'.

The advantage of the Tevatron over an
accelerator that collides antiprotons with a
stationary proton can be seen as follows.



In this case, the momentum 4 vectors are
p* = (me,0), p* = (E/c,p),

and
(p+p)-(p+p) = (E/c+me)®—p?
E?)c? — 5% 4+ 2mE + m?c?

Om(E + mc?).

(p+p)(+ D)

If this is to equal the Tevatron's 4 Tev?/c?
4TeV? 4TeV?

(E4mc?) ~ E= — = 2000 TeV.
/7 2mc? 2 GeV
N
(E>> mc )/ ?Ya‘fon mass = | ée%, 7



Space-Time Events

If two events occur at space-time points
X1* and x,*, their space-time interval

between them is
I m
A\ st ThH — x4

= (ctp —ct1, 0 —x1,Y2 — Y1,22 — 21)-

The scalar product
As-As = (A1) — (Ax)? — (Ay)? — (A2)?

IS Lorentz invariant.



As' -As' = As-As

As an example, imagine an event in which
a person stands at the origin and turns on
a light bulb for a time T. In this case,

As = (cT,0,0,0).

In a frame moving along the x-axis with
speed v, As' is

As' = (T, 25 — x,0,0).



The invariance of (As)? then gives

T2 — (ah — 2% = T2,

From the Lorentz transformation
(513/2 o CE/]_) — WﬁCTa

SO
(14 B272)e?T?
o

(32 7! 2
T/
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Twin Paradox

K,

System K
at rest

| Spaceship
—]

Space station
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Mary travels to a star 8 light years from
the stationary space platform K. Mary's
space ship travels with velocity v=0.8c.
Her twin, Frank, observes the trip and
calculates that one leg of the trip takes

3l
T = Y — 10 years.
0.8c

Mary departs when she and Frank are 30,
so Frank reckons he'll be 50 when she
returns.
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Since Mary is traveling at v=0.8¢, Frank
knows that her clock is ticking slower by
the factor

1 > 3
;_\/1—0.8 =C.

Hence, he calculates her the time to reach
the star to be

7 — 1 (8 ly

v \0.8c

) — 6 years.

Consequently, Frank calculates Mary's age
upon return as 42.
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Note that, on the trip to the star, each
twin believes the other is aging less
rapidly. The asymmetry occurs because
Mary must accelerate to begin the return
Trip.

World lines

ct

In the x-ct plane, we can
plot the trajectories of
objects. Light signals
follow a 45 degree line

. Since As®=0.

Spaceship

Light signal
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For an object traveling with a speed v < ¢,
r = vt = [ct

ct = x/0

which gives a line with a steeper slope.

We can revisit the twin paradox using world
lines and the Doppler shift. Suppose Mary
and Frank agree to send a light pulse to each
other every year according to their clock.
The once/year frequency f is shifted
because of the space ship’s motion.

15



On the trip to the star, the frequency

shift is
1 —-0.8
I= ¢1+O8
and on the way back the shift is

1+0.8
/= ¢1—O8 /o
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ct (ly)

Frank’s worldline

Now, on Mary's outward

20 10

18 ~\ trip signals take 3

\::\15 Mary’s worldline (return) year.s 1-0 r‘eaCh Fr.ank'
X Frank receives last of

”Z /Y e the 6 sighals from the

16 -

Mary's outward frip in
: e year 18, He then
}/ receives 6 signals in
the 2 years before
/" wme Mary reaches the
L i station, concluding that

she has aged 12 years.
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Only 2 Frank's signals reach Mary before
she turns back. Then, on the return trip,
she receives 3 signals/year for 6 years.
Mary counts 20 signals and concludes that
Frank has aged 20 years.
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