

Thermodynamics

PHY 215
Thermodynamics and
Modern Physics

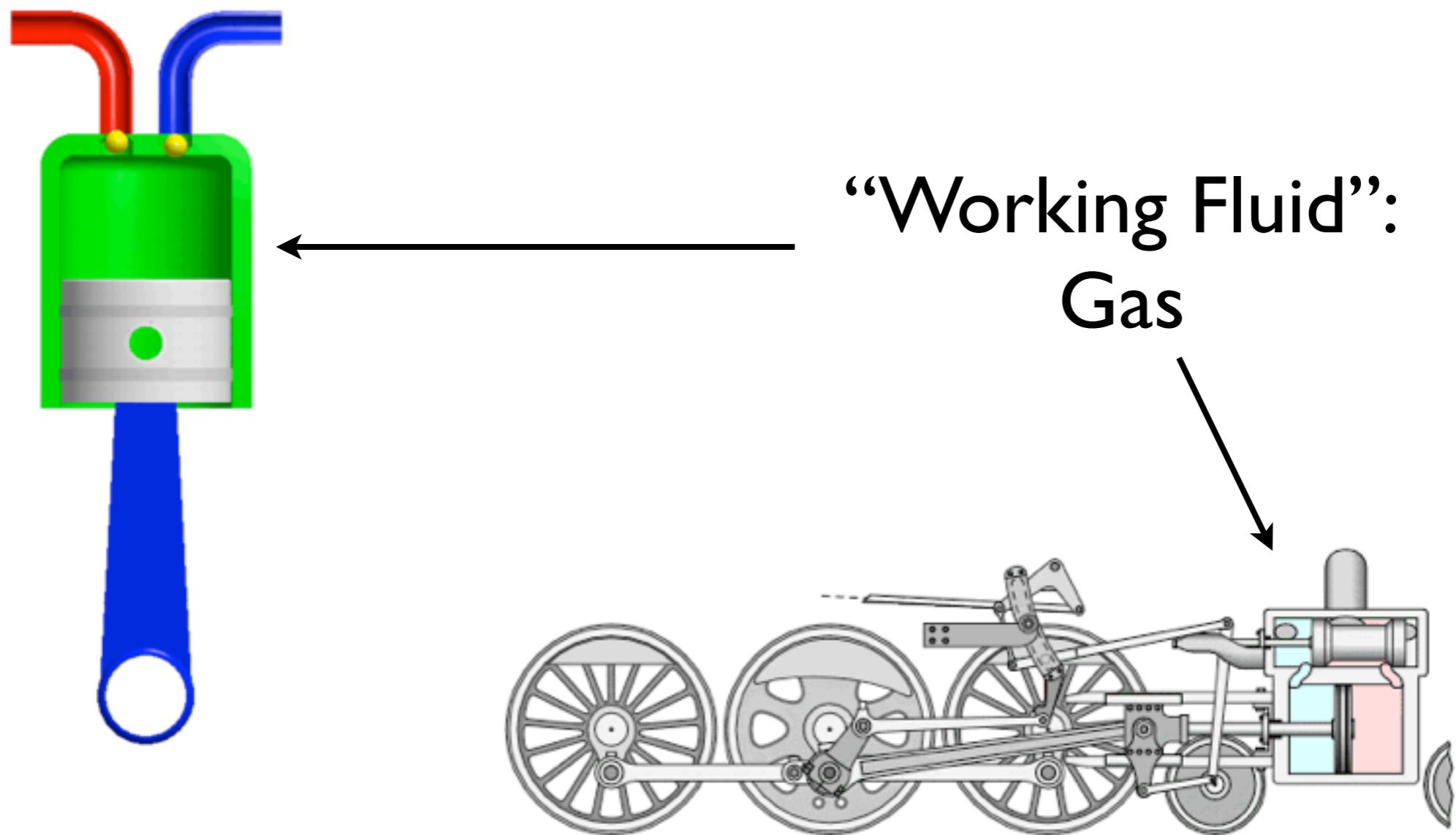
Spring 2026
MSU

Outline:

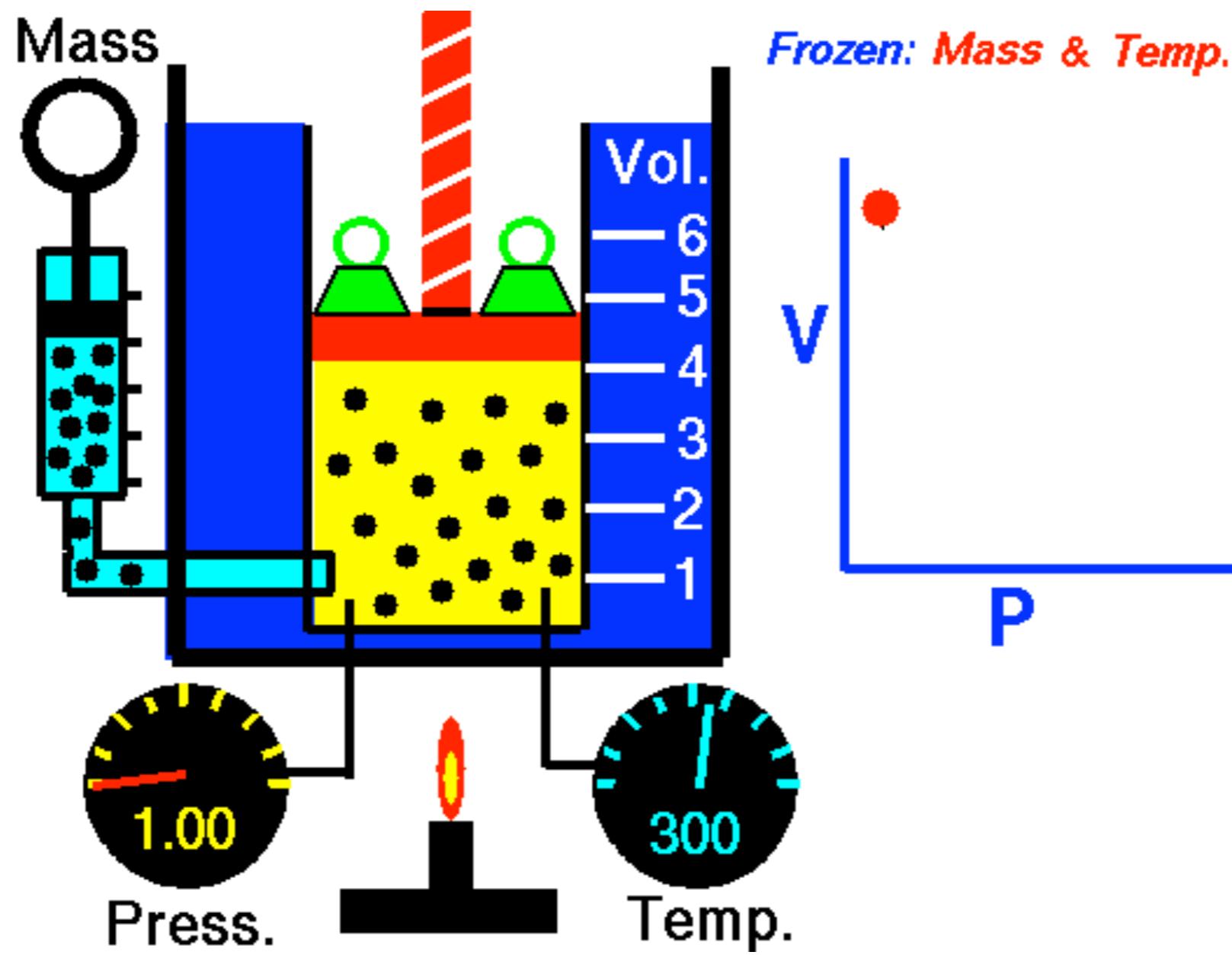
The Ideal Gas Law

- Systems of interest: Gases
- Ideal Gas Laws
- Kinetic Theory of Gases
- Equipartition
- Molar Specific Heat of Gases

Systems of Interest

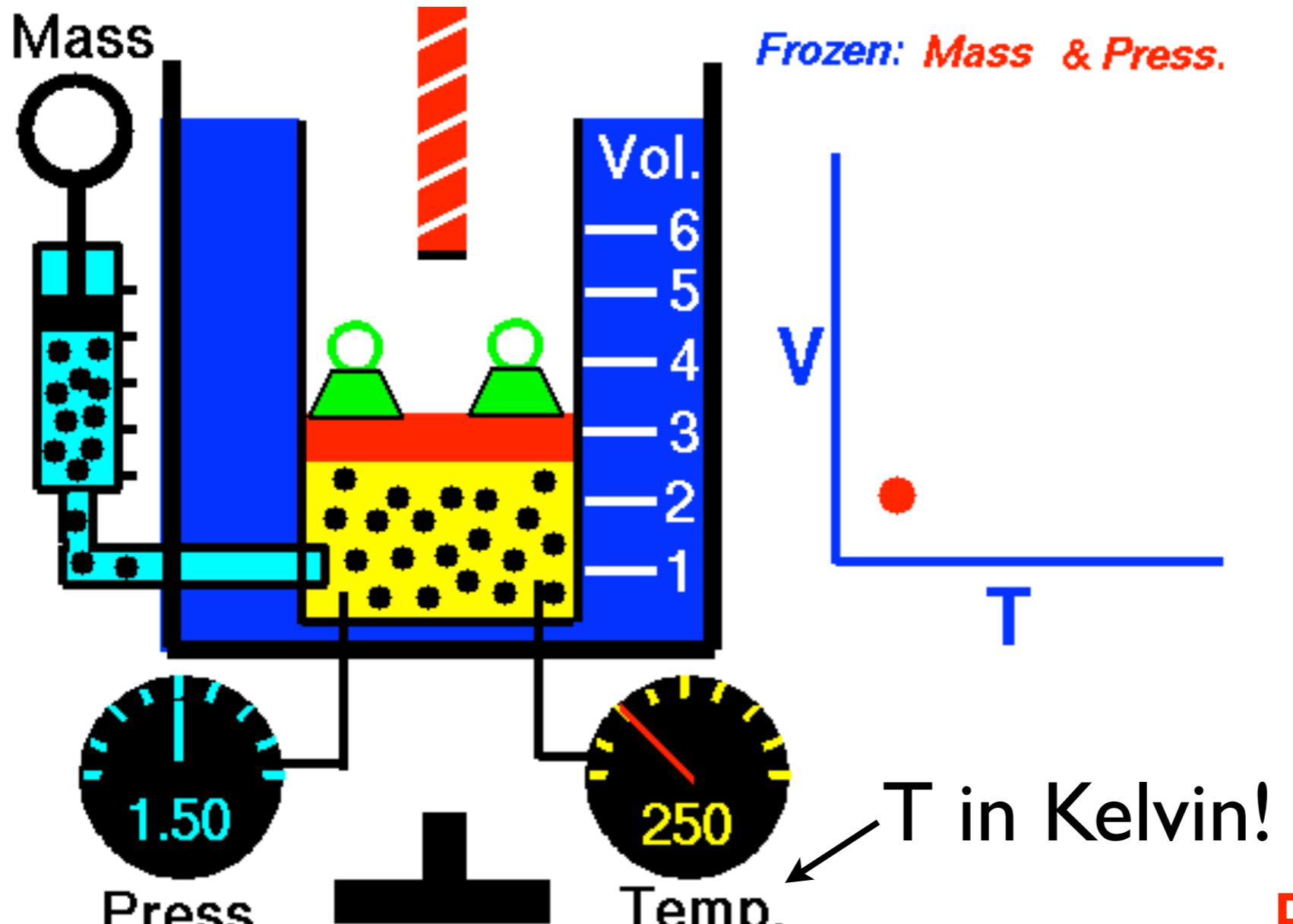


Boyle's Law



$$pV = \text{const, at fixed } T \text{ and } n$$

Charles's Law



$V \propto T$, at fixed P and n

$P \propto T$ at fixed V
Guy-Lussac's Law

Combined

THE IDEAL GAS LAW

$$PV = nRT \longleftarrow \text{“Equation of State”}$$

where n is the number of moles of gas and R is the gas constant,

$$R = 8.31 \text{ J/(mol} \cdot \text{K)}$$

One mole of an ideal gas at standard temperature (0°C) and pressure (1 atm) (“STP”) occupies approx. 22.4 liters.

$$\begin{aligned}[p] &= 1 \text{ Pa} = 1 \text{ N/m}^2 \\ [V] &= 1 \text{ m}^3 = 10^6 \text{ l} \\ [T] &= {}^\circ \text{K} \\ [n] &= \text{moles} \end{aligned}$$

Molecular Version of Ideal Gas Law

Alternate form:

$$PV = NkT$$

where N is the number of molecules in the gas

and k is the Boltzmann's constant,

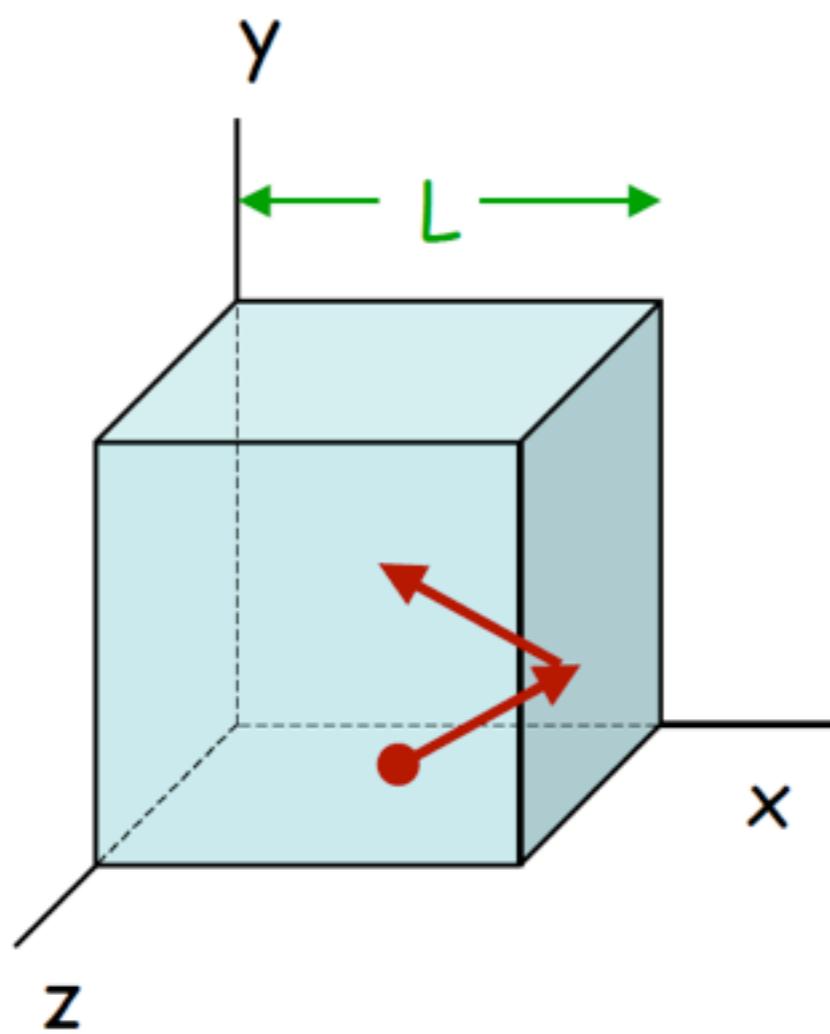
$$k = 1.38 \times 10^{-23} \text{ J/K}$$

$$N_A = \text{Avagadro's Number} \\ = 6.022 \times 10^{23}$$

(Comparing the two forms gives $R = N_A k$.)

Kinetic Theory of Gases

Consider N molecules (n moles with $n=N/N_A$) in a cubical box of side L , i.e. Volume = L^3 .



Change in momentum at the x -wall is

$$\Delta p_x = 2 m v_x$$

Time between collisions with the x -wall is

$$\Delta t = 2 L / v_x$$

Origin of Pressure

Average rate of change of momentum in x-direction:

$$\Delta p_x / \Delta t = (2mv_x) / (2L/v_x) = m v_x^2 / L$$

This is force exerted by the molecule.

$$\text{Total Force} = \sum_{i=1}^N (m v_x^2)_i / L$$

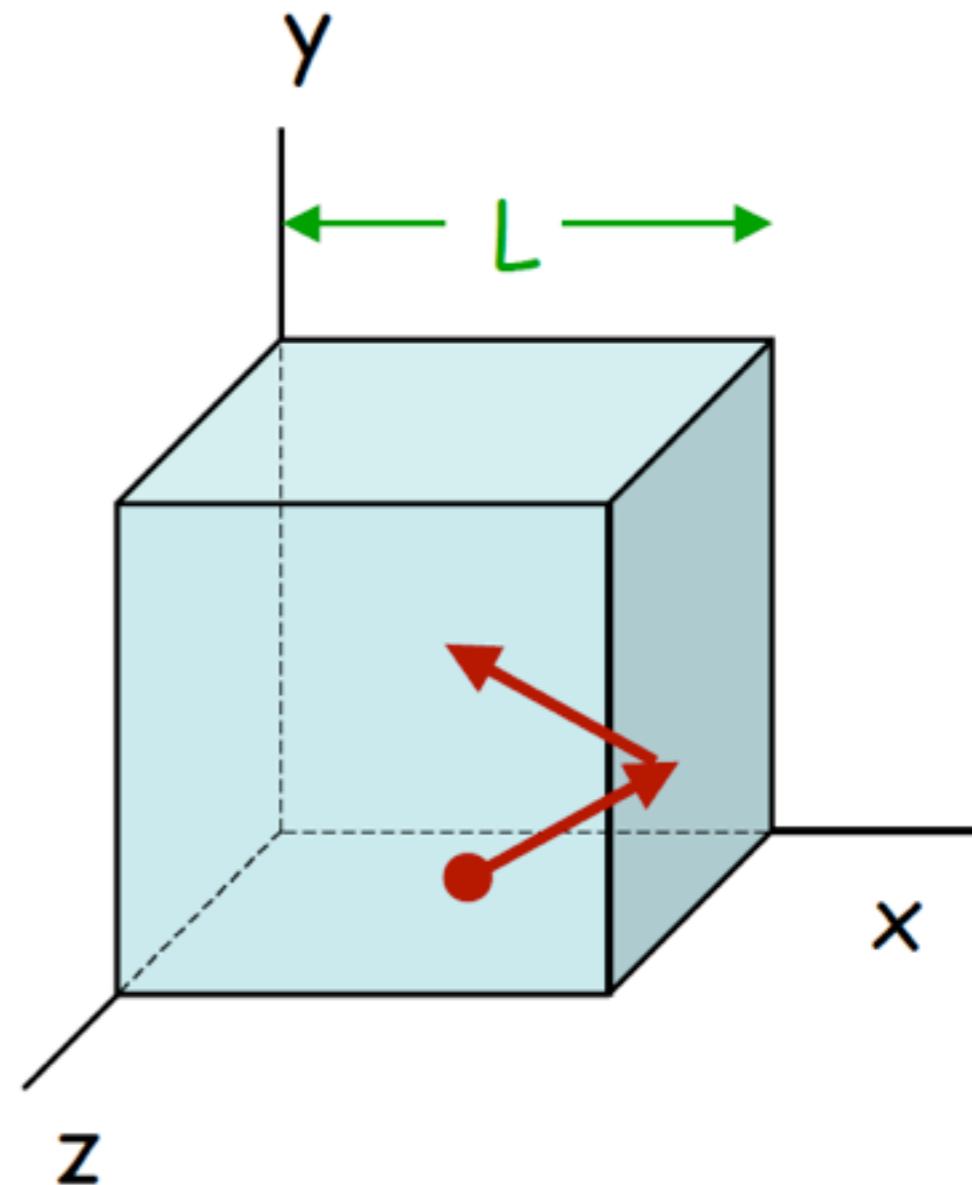
$$\begin{aligned} \text{Pressure } P &= \text{Force/Area} = F/L^2 \\ &= (m/L^3) \sum (v_x^2)_i \end{aligned}$$

$$\Rightarrow P = (m/L^3) N \langle v_x^2 \rangle$$

average

$mN = nM$ is the total mass.

where $n = \# \text{ of moles}$
 $M = \text{molar mass}$



$$P = (nM/V) \langle v_x^2 \rangle$$

Relation to Gas Law

For any molecule: $v^2 = v_x^2 + v_y^2 + v_z^2$

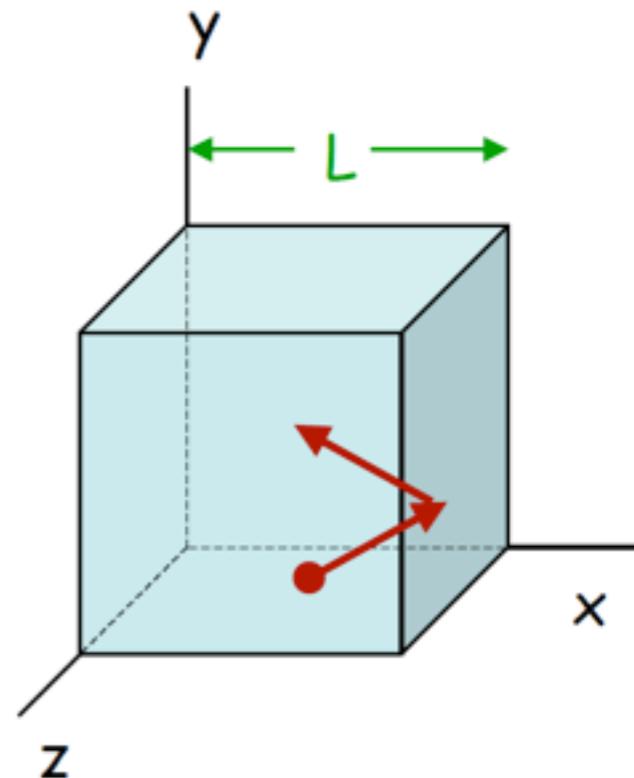
$$\Rightarrow \langle v_x^2 \rangle = (1/3) \langle v^2 \rangle$$

$$\Rightarrow P = (nM/3V) \langle v^2 \rangle$$

Define root-mean-square speed v_{rms} :

$$v_{rms} = \sqrt{\langle v^2 \rangle}$$

$$\Rightarrow PV = (nM/3) v_{rms}^2$$



From ideal gas law: $PV = nRT$

$$\Rightarrow (nM/3) v_{rms}^2 = nRT$$

$$\Rightarrow v_{rms} = \sqrt{3RT/M}$$

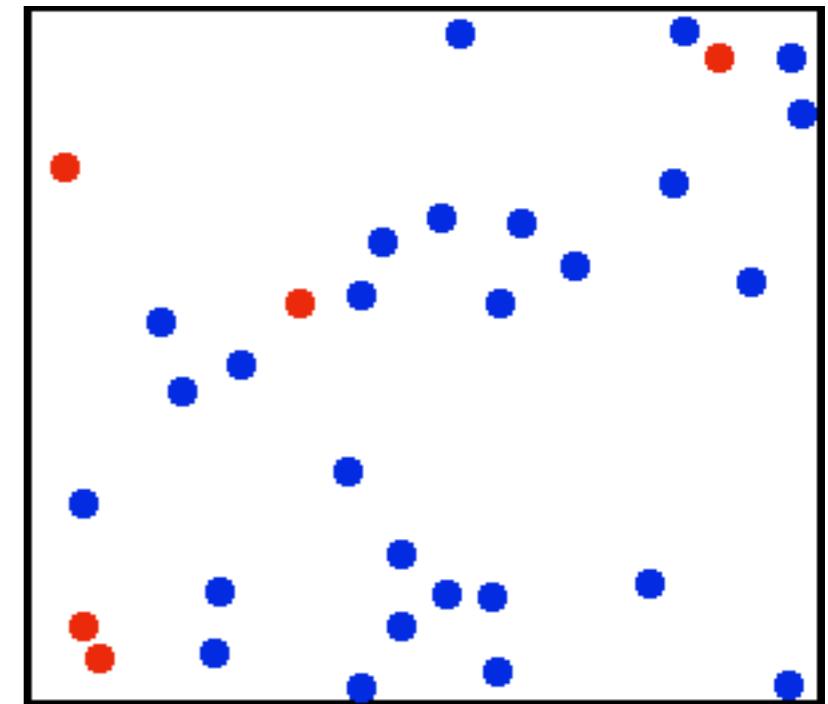
Internal Kinetic Energy

Average (translational) kinetic energy per molecule

$$= (1/2) m \langle v^2 \rangle = (1/2) m (3RT/M)$$

Using $M/m = N_A$,

$$\langle K \rangle = 3RT/(2N_A) = (3/2) k T$$

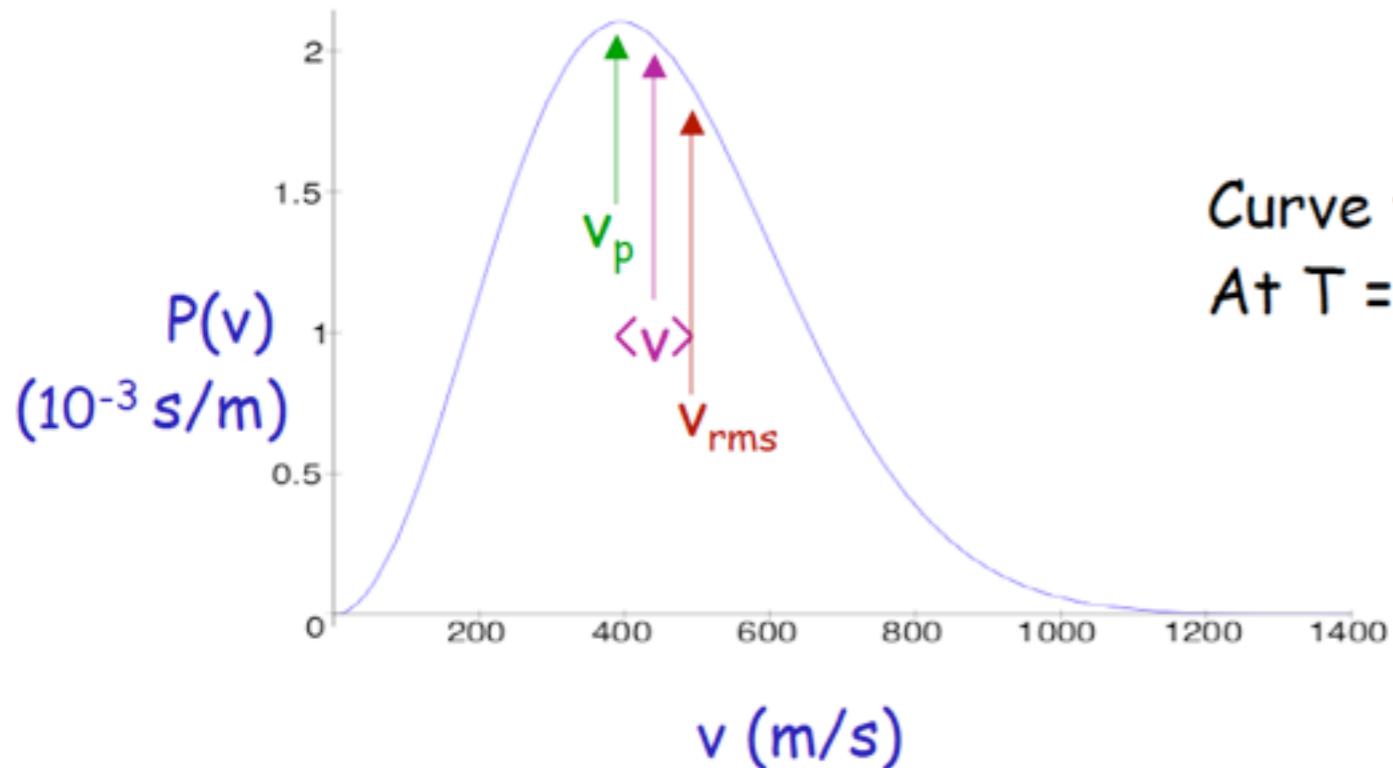


$$\Rightarrow \langle K \rangle = (3/2) k T$$

($1/2$) kT “per degree of freedom”
(v_x, v_y, v_z)

Temperature is a measure of the average kinetic energy of gas molecules!

Maxwell Distribution



$e^{-E_{kin}/kT}$

$$P(v) = 4\pi \left(\frac{M}{2\pi RT} \right)^{3/2} v^2 e^{-\frac{Mv^2}{2RT}}$$

$P(v) dv$ is the probability that a molecule has speed between v and $v + dv$.

Internal Energy: U

- Monatomic gas - Single atoms:

$$U = N \left(\frac{3}{2}\right) kT = \left(\frac{3}{2}\right) nN_A kT = \left(\frac{3}{2}\right) nRT$$

Each atom has 3 Degrees of Freedom.
(K. E. in x, y, or z directions).

- Diatomic molecule:

Rotates (in two planes)

⇒ 5 degrees of freedom.

$$U = \left(\frac{5}{2}\right) nRT$$

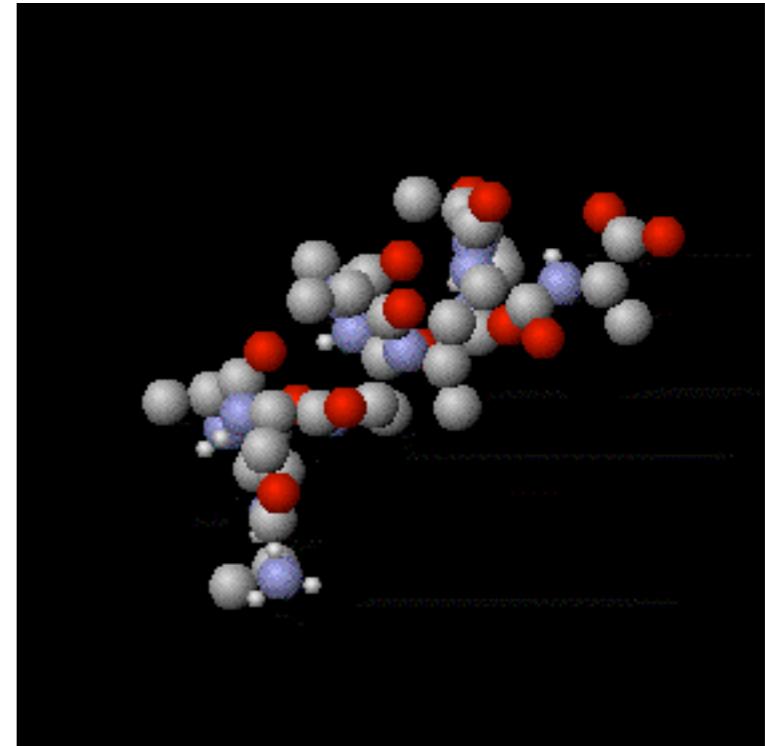
- Polyatomic molecule:

Rotates in all 3 planes

⇒ 6 degrees of freedom.

(3 translational + 3 rotational).

$$U = \left(\frac{6}{2}\right) nRT = 3 nRT$$

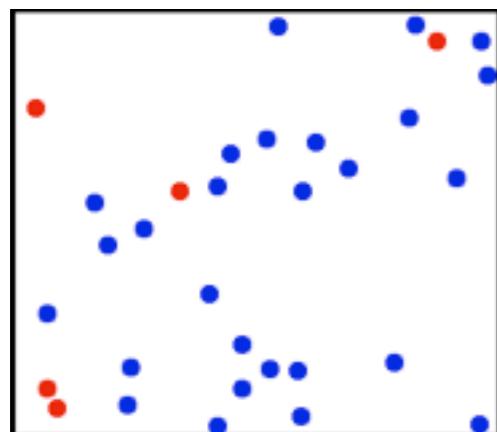


Vibrational
degrees of freedom!

Ideal Gas: U is a
Function of T only!

Molar Specific Heat

at constant volume



$$\Delta U$$

Monatomic Gas

$$\Delta Q = \Delta U = (3/2) nR\Delta T$$

$$\Delta Q = n C_V \Delta T$$

$$\Delta Q$$

molar specific heat

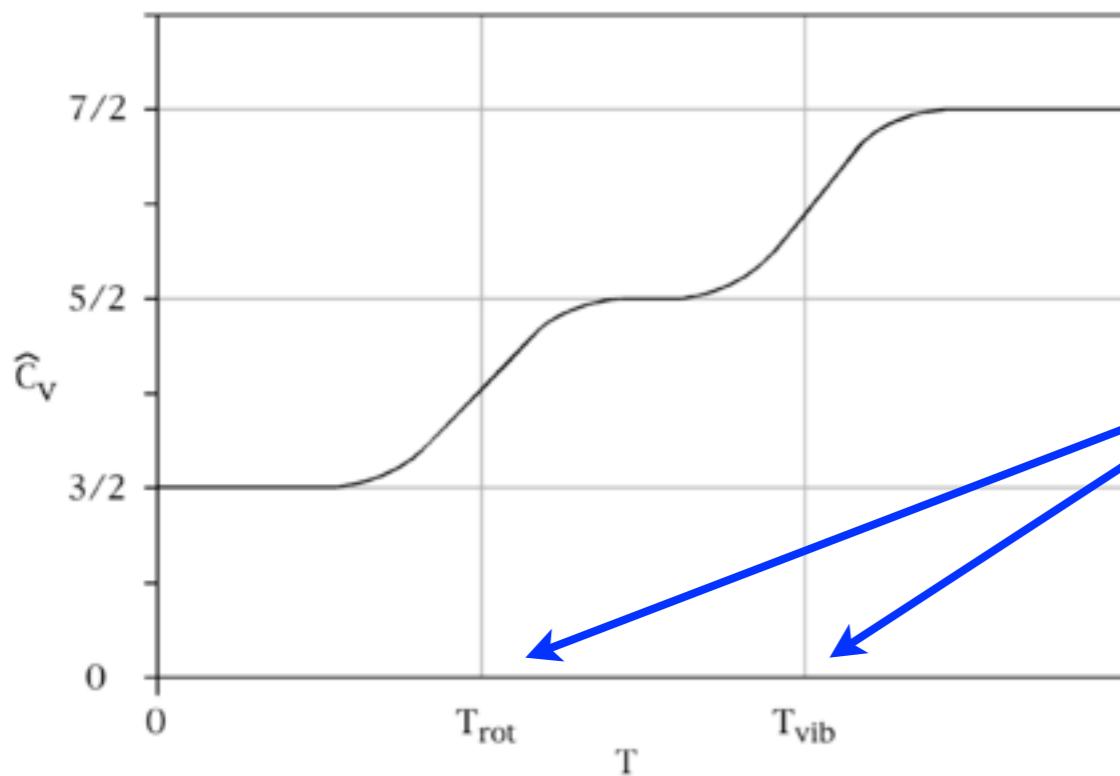
$$C_V = (3/2) R = 12.5 \text{ J/(mol} \cdot \text{K)}$$

Equipartition

General Case: $C_v = (\# \text{ degrees of freedom}/2)R$

$$E = (\# \text{ degrees of freedom})(kT/2)$$

Diatom Molecule



Quantum Mechanics:
Energy Levels Quantized.
Different modes “turn on”
at different temperature.

Summary

- Equation of state for a gas: the ideal gas law.
- Kinetic Theory of Gases: pressure and temperature are manifestations of the kinetic motion of gas molecules.
- Maxwell velocity distribution
- Internal energy of a gas: translational, rotational, and vibrational.
- (Molar) specific heat (C_V): $(1/2)R$ per “active” degree of freedom (dof).
- Internal Energy U : $(1/2) nRT$ per dof.