CMP Seminar Michigan State University

Zhiqiang Mao Dept. of Physics and Engineering Physics Tulane University

Interplay between magnetism and superconductivity in iron chalcogenides

The interplay between magnetism and superconductivity in Fe-based superconductor systems is currently a subject of intense studies. The iron chalcogenide Fe_{1+y}(Te_{1-x}Se_x) is of particular interest due to its unique magnetic properties. While the parent compound Fe_{1+y}Te shows antiferromagnetism with (π ,0) in-plane magnetic wave vector [1], the optimally doped sample displays superconductivity with (π , π) spin resonance [2]. This contrasts with iron pnictides in which both the parent compound's antiferromagnetism [3-4] and the doped samples' superconducting (SC) spin resonance [5-7] are characterized by the in-plane Fermi surface nesting wave vector $Q_n = (\pi,\pi)$. The evolution from (π ,0) magnetism to superconductivity with (π,π) spin resonance in iron chalcogenides is associated with coexistence of magnetic correlations at (π ,0) and (π,π) [8]. The other remarkable difference between iron chalcogenide and iron pnictide superconductors is their phase diagrams. In iron pnictides, bulk superconductivity either emerges immediately following suppression of long-range (π,π) antiferromagnetic (AFM) order [9-10], or coexists with it in a particular composition range [11-14]. In contrast, in iron chalcogenides, bulk superconductivity does not appear immediately following the suppression of long-range ($\pi,0$) AFM order. Instead, an intermediate phase with weak charge carrier localization appears between AFM order and bulk superconductivity for 0.09 < x < 0.3 [8]. In this stalk, I will first present an overview on the results summarized above and then introduce our recent studies on the coupling between electronic and magnetic properties in this system [8,15]. I will show the doping dependences of Sommerfeld coefficient γ , Hall coefficient R_H and Hall angle as well as their relations with superconductivity [15]. The origin of superconductivity suppression and charge carrier localization in the underdoped region will be discussed in terms of these experimental results.

References:

[1] W. Bao et al., Phys. Rev. Lett 102, 247001 (2009).

[2] Y. Qiu et al., Phys. Rev. Lett 103, 067008 (2009).

[3] C. de la Cruz et al., Nature 453, 899 (2008).

[4] Q. Huang et al., Phys. Rev. Lett 101, 257003 (2008).

[5] A. D. Christianson et al., Nature 456, 930 (2008).

[6] M. D. Lumsden et al., Phys. Rev. Lett 102, 107005 (2009).

[7] S. Chi et al., Phys. Rev. Lett 102, 107006 (2009).

[8] T. J. Liu et al., Nat. Mater. 9, 718 (2010).

[9] J. Zhao et al., Nat. Mater. 7, 953 (2008).

[10] H. Luetkens et al., Nat. Mater. 8, 305 (2009).

[11] A. J. Drew et al., Nat. Mater. 8, 310 (2009).

[12] H. Chen et al., Europhys. Lett. 85, 17006 (2009).

[13] J.-H. Chu et al., Phys. Rev. B 79, 014506 (2009).

[14] S. Nandi et al., Phys. Rev. Lett 104, 057006 (2010).

[15] J. Hu et al., Phys. Rev. B 88, 094505 (2013).

Monday, Nov. 23, 2015 4:10 PM, BPS1400 Prof. David Tomanek - Host