CMP Seminar Michigan State University

Chen Wang Department of Applied Physics Yale University

Quasiparticle dynamics and decoherence in superconducting qubits

Superconducting quantum circuits have attracted growing interest in recent years as a promising candidate for fault-tolerant quantum information processing, powered by dramatic improvements in their coherence times. In this talk I will describe recent experiments unraveling the dominant decoherence mechanisms in state-of-art superconducting qubits: quasiparticle tunneling and surface dielectric dissipation. No intrinsic limit to the perfection of Josephson junctions as a quantum circuit element appears in sight.

Moreover, we find vortices can surprisingly improve coherence of superconducting qubits by suppressing non-equilibrium quasiparticles. I will present measurements of quasiparticle dynamics (recombination, trapping, generation and diffusion) in superconducting aluminum at 20 mK using the qubit as a sensitive probe. We directly demonstrate the power-law decay characteristics of the canonical quasiparticle recombination process, and show quantized changes of quasiparticle trapping rate due to individual vortices.

Monday, February 2, 2015 4:10 p.m. BPS 1400 Prof. Norman Birge - Host