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1. BACKGROUND TO FORTRAN 
 

1.1 Terminology 
 
A computer is a machine capable of storing and executing sets of instructions, called programs, in order to 
solve specific problems. 
 
A platform refers to the combination of computer + operating system. 
 
A programming language is a particular set of rules (with its own grammar or syntax) for coding the 
instructions to a computer. 
 
Source code (human-readable) is converted to binary code (computer-readable) in the process of compilation. 
This is achieved by running a special program called a compiler. 
 
A high-level programming language. (e.g. Fortran, C, Pascal, Java,…) is human-comprehensible and capable 
of running on any platform with a suitable compiler. A low-level language (like assembler) is machine-
dependent and makes direct instructions to the processor. 
  
 
1.2 Fortran History 
 
Fortran (FORmula TRANslation) was the first high-level programming language. It was devised by John 
Bachus in 1953. The first compiler was produced in 1957. 
 
Fortran is highly-standardised, making it extremely portable (able to run under a wide range of computers and 
operating systems). It is an evolving language, passing through a sequence of international standards: 
 Fortran 66 – the original ANSI standard (accepted 1972!) 
 Fortran 77 – ANSI X3.9-1978 
 Fortran 90 – ISO/TEC 1539:1991 
 Fortran 95 – ISO/IEC 1539-1: 1997 – a (very) minor revision of Fortran 90 
 
The compiler which we shall use is provided by Salford Software and happens to be a Fortran 95 compiler. 
However, everything we do will actually conform to the Fortran 90 standard. 
 
Salford Fortran – like many Fortran implementations – comes with additional library routines for producing, 
for example, graphical output or Windows applications. 
 
 
1.3 Creating Executable Code – General Procedure 
 
For all high-level languages (Fortran, C, Pascal, …) producing executable code is a two-stage process: 
(i) Compiling converts source code to binary object code. 
(ii) Linking combines one or more files of compiled code with additional library routines to create an 

executable program. 

 
 

linking 

f i l e1. f 95 

f i l e2. f 95 

source code 

f i l e1. obj  

f i l e2. obj  

object code 

pr ogname. exe 

l i br ar i es 

executable code 

compiling 
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Source code is a human-readable set of instructions that can be created and modified on any computer with any 
text editor. It consists of one or more files.  
 Fortran files typically have filetype . f 90 or . f 95.  
 C++ files typically have filetype . CPP 
 
Each source file is compiled (by a special program called a compiler) to create a corresponding object code 
file. These are computer-readable and platform-dependent. 
 On a PC object code usually has filetype . obj  
 
One or more object code files are linked (by a special program called a linker) with any required library 
routines to create a single executable program. On a PC this would have filetype . exe 
 
Most Fortran codes consist of multiple subprograms, all performing specific, independent functions. Different 
sets of subprograms may be contained in different source files which must be compiled separately and then 
linked. The advantages of having collections of routines in different files is that it is easy to re-use 
subprograms in different applications. Many important subprograms are kept together as pre-compiled 
libraries. Examples in engineering are the NAG (National Algorithms Group) libraries for mathematical 
programming or Salford’s ClearWin libraries for creating Windows applications. 
 
 
1.4 Creating Executable Code – Salford Fortran 
 
Source code can be created with any text editor. In the University clusters, suitable editors are: 

not epad – supplied with the Windows operating system 
pl at o – supplied with the Salford software 

but many other editors are available.  
 
The precise commands used to compile and link will depend on the particular platform and compiler. For the 
Salford Fortran 95 compiler on a PC the relevant programs are: 
 compiler: f t n95 
 linker:  sl i nk  
 
In the Salford implementation, files containing Fortran source code should have filetype . f 95 or . f 90. 
 
Salford’s Fortran implementation (like many others) includes additional applications to facilitate program 
development: 
• an integrated development environment or graphical interface (pl at o); 
• additional library routines (Cl ear Wi n+ for writing Windows interfaces); 
• a  debugging facility (sdbg). 
• a make facility for better control of compiling and linking. 
Only the first of these will be covered in this course, but the rest are available and worth investigating if you 
intend to pursue Fortran programming further. 
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2. RUNNING A FORTRAN PROGRAM 
 
You have TWO options: 
(i) Use the Command Window 
(ii) Use an “ integrated development environment”   (pl at o2) 
 
Those who have grown up with Windows will probably find the latter more friendly, but it tends to obscure the 
basic processes going on and is Salford-Fortran-specific, so we will examine both options. 
 
 
2.1 Salford Fortran in the University Clusters 
 
The Salford Software programs group can be accessed from the usual St ar t  menu: 
 St ar t  > Al l  Pr ogr ams 

> Pr ogr ams -  Cor e 
  > Compi l er s 
  > Sal f or d Sof t war e 
  > Sal f or d FTN95 Command- l i ne Envi r onment              or           Pl at o2 I DE 
 
(Although there are plenty of other ways of starting a Command Window, starting from the Salford Software link should 
ensure that the PCs in the cluster are able to find all the necessary compilers and run-time libraries.) 
 
 
2.2 Using the Command Window 
 
(A brief summary of the more common commands in the Command Window can be found in the Internet 
resources for this course.) 
 
Open a command window as in Section 2.1. 
 
Navigate to, e.g., your p: drive (if necessary): 

p:  
Create a directory (aka “ folder” ) to put your work in: 

md myf or t r an 
Then change to that directory: 

cd myf or t r an 
 
 
Create the following simple source file with any editor, e.g., not epad: 

not epad pr og1. f 95 
(Notepad will tell you if the file doesn’ t already exist and ask you to confirm creation). 
PROGRAM HELLO 
   PRI NT * ,  ' Hel l o,  wor l d! '  
END PROGRAM HELLO 

Make sure that you save the file. 
 
Compile the code by entering the command 
 f t n95 pr og1. f 95 
This will (by default) create the binary object file pr og1. obj . 
 
Link the code by entering the command 
 sl i nk pr og1. obj  
This will (again by default) create an executable file pr og1. exe 
 
Run the program by entering the command 
 pr og1 
 
 
Various options can be passed to the compiler. These vary considerably between Fortran compilers. Typical 
examples for Salford Fortran are given below. 
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 f t n95 pr og1. f 95 / l i nk   
– invokes the linker immediately after compiling. 

 
 f t n95 pr og1. f 95 / f ul l _debug / undef  
  – debugging options;  useful during development but will slow down final code. 
 
 f t n95 / hel p 
  – brings up a (moderately useful) help system, including the complete set of compile options. 
 
 
2.3 Using Salford’s Integrated Development Environment (Plato) 
 
Open the Pl at o integrated development environment as in Section 2.1. 
 
An integrated development environment (IDE) is basically there to assist in program development. It consists 
of an advanced text editor with all the buttons you need to carry out compiling/linking/executing (plus a lot of 
other things) with the click of a mouse. It can optionally provide “syntax highlighting” , i.e. colouring sections 
of code according to their function: keyword, variable, comment etc. This occasionally helps. 
 
(Note, however, that pl at o is specific to Salford software and if the University ever goes over to another 
compiler then you are stuffed! Hence we teach the Command Window version as well.) 
 
Type in the same source file.  
 
PROGRAM HELLO 
   PRI NT * ,  ' Hel l o,  wor l d! '  
END PROGRAM HELLO 

 
Save the source code (in any folder of your choice) as pr og2. f 95 (The . f 95 extension is vital!) 
 
Compile the code by using the pull-down menu  
 Pr oj ect  > Compi l e f i l e 
(You will find a handy little button on the toolbar that does exactly the same thing.) 
This will create an object file pr og2. obj . 
 
Compile and link (“build” ) the code by using the pull-down menu  
 Pr oj ect  > Bui l d f i l e 
(Again, you will find a handy little button on the toolbar that does exactly the same thing.) 
This will create an executable file pr og2. exe 
 
Run the program by either: 
 Hitting the RUN button after you have complied and linked the code 
  or 
 Using the pull-down menu: Pr oj ect  > Run  
  or 
 Clicking the appropriate button on the toolbar 
 
 
Actually, using Pr oj ect  > Run will automatically 
 save, 
 compile, 
 link, 
 run 
the code. However, it is usually better at first to do these in separate steps, so that you can debug your program. 
 
If the compiler encounters any mistakes then it will list these in an errors window and you can go direct to the 
appropriate line of code by clicking on the particular error. 
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3. A SIMPLE PROGRAM 
 
Example. Quadratic equation solver (real roots). 
 
The well-known solutions of the quadratic equation 

 02 =++ CBxAx  
are 

 
A

ACBB
x

2

42 −±−=  

The roots are real if and only if the discriminant ACB 42 −  is greater than or equal to zero. 
 
A program which asks for the coefficients and then outputs the real roots might look like the following. 
 
PROGRAM ROOTS 
!  Pr ogr am sol ves t he quadr at i c  equat i on Ax* * 2+Bx+C=0 
   I MPLI CI T NONE 
 
   REAL A,  B,  C                                !  decl ar e var i abl es 
   REAL DI SCRI MI NANT,  ROOT1,  ROOT2 
 
 
   PRI NT * ,  ' I nput  A,  B,  C'                     !  r equest  coef f i c i ent s 
   READ * ,  A,  B,  C 
 
   DI SCRI MI NANT = B * *  2 -  4. 0 *  A *  C         !  cal cul at e di scr i mi nant  
 
   I F (  DI SCRI MI NANT < 0. 0 )  THEN       
      PRI NT * ,  ' No r eal  r oot s '  
   ELSE 
      !  Cal cul at e r oot s 
      ROOT1 = (  - B + SQRT(  DI SCRI MI NANT )  )  /  (  2. 0 *  A )  
      ROOT2 = (  - B -  SQRT(  DI SCRI MI NANT )  )  /  (  2. 0 *  A )  
      PRI NT * ,  ' Root s ar e ' ,  ROOT1,  ROOT2      !  out put  r oot s 
   END I F 
 
END PROGRAM ROOTS 
 
This example illustrates many of the features of Fortran. 
 
(1) Statements 
 
Fortran source code consists of a series of statements. The usual use is one per line (interspersed with blank 
lines for clarity). However, we shall see later that it is possible to have more than one statement per line and for 
one statement to run over several lines.  
 
Lines may be up to 132 characters long.  
 
 
 (2) Comments 
 
The exclamation mark (!) signifies that everything after it on that line is a comment (i.e. ignored by the 
compiler, but there for your information). Sprinkle liberally. 
 
 
(3) Constants 
 
Elements whose values don’ t change are termed constants. Here, 2. 0 and 4. 0 are numerical constants. The 
presence of the decimal point indicates that they are of real type. We shall discuss the difference between real 
and integer types later. 
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(4) Variables 
 
Entities whose values can change are termed variables. Each has a name that is, basically, a symbolic label 
associated with a specific location in memory. To make the code more readable, names should be descriptive 
and meaningful; e.g. DI SCRI MI NANT in the above example. 
 
All the variables in the above example have been declared of type REAL. Other types (I NTEGER, 
CHARACTER, LOGI CAL, …) will be introduced later, where we will also explain the I MPLI CI T NONE 
statement. 
 
Variables are declared when memory is set aside for them by specifying their type, and defined when some 
value is assigned to them.  
 
 
(5) Operators 
 
Fortran makes use of the usual binary numerical operators +, - , *  and /  for addition, subtraction, 
multiplication and division, respectively. * *  indicates exponentiation (‘ to the power of’ ).  
 
Note that ‘=’  is an assignment operation, not a mathematical equality. Read it as ‘becomes’ .  
 
 
(6) Intrinsic Functions 
 
The Fortran standard provides some intrinsic (that is, built-in) functions to perform important mathematical 
functions. The square-root function SQRT is used in the example above. Others include COS, SI N, LOG, EXP, 
TANH. A list of useful mathematical intrinsic functions is given in Appendix A4. 
 
Note that, in common with all other scientific programming languages, the trigonometric functions SI N, COS, 
etc. expect their arguments to be in radians. 
 
 
(7) Simple Input/Output 
 
Simple list-directed input and output is achieved by the statements 
   READ * ,  list 
   PRI NT * ,  list 
respectively. The contents are determined by what is in list and the *  indicates that the computer should decide 
how to format the output. Data is read from the standard input device (usually the keyboard) and output to the 
standard output device (usually the screen). Later we shall see how to read from and write to files, and how to 
produce formatted output. 
 
 
(8) Decision-making 
 
All programming languages have some facility for decision-making: doing one thing if some condition is true 
and (optionally) doing something else if it is not. The particular form used here is 
   I F (  some condition )  THEN 
      [ do something]  
   ELSE 
      [ do something else]  
   END I F 
 
We shall encounter various other forms of the I F construct. 
 
 
(9) The PROGRAM and END PROGRAM statements 
 
Every Fortran program has one and only one main program. We shall see later that it can have many 
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subprograms (subroutines or functions). The main program has the structure 
[ PROGRAM [ name] ]  
   [ declaration statements]  
   [ executable statements]  
END [ PROGRAM [ name] ]  
 
Everything in square brackets [ ] is optional. However, it is good programming practice to put the name of the 
program in both header and END statements, as in the example above. 
 
 
(10) Cases and Spaces 
 
Except within character strings, Fortran is completely case-insensitive. Everything may be written in upper 
case, lower case or a combination of both, and we can refer to the same variable as ROOT1 and r oot 1 within 
the same program unit. Warning: this is not true in some programming languages, notably C and C++, so it is 
probably best not to get in the habit of doing it. 
 
Spaces are generally valid everywhere except in the middle of names and keywords. As with comments, they 
should be sprinkled liberally to aid clarity. 
 
Indentation is optional, but widely used to clarify program structure. Typical use is to indent a program’s 
contents (by 2 or 3 spaces) from its header and END statements, and to indent the statements contained within, 
for example, I F constructs or DO loops (see later) by a similar amount. 
 
 
(11) Running the Program. 
 
Follow the instructions in the first section to compile and link the program. Run it by entering its name at the 
command prompt or from within Pl at o. It will ask you for the three coefficients A, B and C. 
 

Try A=1, B=3, C=2 (i.e. 0232 =++ xx ). The roots should be –1 and –2. You can input the numbers as 
 1  3  2  [enter] 
or 
 1, 3, 2  [enter] 
or even 
 1 [enter] 
 3  [enter] 
 2  [enter] 
 
Now try the combinations 
 A = 1, B = –5, C = 6 
 A = 1, B = –5, C = 10  (What are the roots of the quadratic equation in this case?) 
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4. BASIC ELEMENTS OF FORTRAN 
 
4.1 Building Blocks of the Language 
 
The Fortran character set consists of: 

the alphanumeric characters: A, …, Z, a, …, z , 0, …, 9 and _(underscore)  
the special symbols:  (blank) = + -  *  /  (  )  ,  .  '  $ :  "  % & ;  < > ? 
 

From the character set we can build tokens which are one of six types: 
 labels e.g. 100  1234   9999 
 constants e.g. 15   30. 5   ' Thi s i s  a st r i ng'    . TRUE.   
 keywords e.g. PROGRAM   END   I F   DO 
 names e.g. MYNAME  Manchest er _Uni t ed   Chel sea123 
 operators e.g. +   -    *    /    * *    > 
 separators e.g. (    )    :    ;  
 
From tokens we can build statements. e.g. 
 X = (  - B + SQRT(  B * *  2 – 4. 0 *  A *  C )  )  /  (  2. 0 *  A )  
 
From statements we can build program units. 
 
 
4.2 Variable Names 
 
A name is a symbolic link to a location in memory. A variable is a memory location whose value may be 
changed during execution. Names must: 
• have between 1 and 31 alphanumeric characters (alphabet, digits and underscore); 
• start with a letter. 
 
It is possible – but unwise – to use a Fortran keyword or the name of an intrinsic function as a variable name. 
Tempting names that should be avoided in this respect include: COUNT, LEN, PRODUCT, RANGE, SCALE, 
SI ZE, SUM and TI NY. 
 
The following are valid (if unlikely) variable names: 
 Manchest er _Uni t ed 
 AS_EASY_AS_123 
 STUDENT 
The following are not: 
 ROMEO+JULI ET    (+ is not allowed) 
 999Hel p   (starts with a number) 
 HELLO!  (!  is not allowed) 
 
 
4.3 Data Types 
 
In Fortran there are 5 intrinsic (i.e. built-in) data types: 
 integer 
 real 
 complex 
 character 
 logical 
The first three are the numeric types. The last two are non-numeric types. 
 
In advanced applications it is also possible to have derived types and pointers. Both of these are highly 
desirable in a modern programming language (they are very similar to features in the C programming 
language), but they are beyond the scope of this course. 
 
Integer constants are (signed or unsigned) whole numbers, without a decimal point, e.g. 
 100 +17 –444 0 666 
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They are stored exactly, but their range is limited: typically –2n-1 to 2n-1–1, where n is either 16 (for 2-byte 
integers) or 32 (for 4-byte integers). It is possible to change the default range using the ki nd type parameter 
(see later). 
 
Real constants have a decimal point and may be entered as either 
 fixed point, e.g.  412.2 
 floating point, e.g. 4.122E+02 
Real constants are stored in exponential form in memory, no matter how they are entered. They are accurate 
only to a finite machine precision, (which, again, can be changed using the ki nd type parameter). 
 
Complex constants consist of paired real numbers, corresponding to real and imaginary parts. e.g. ( 2. 0, 3. 0)  
corresponds to 2 + 3i. 
 
Character constants consist of strings of characters enclosed by a pair of delimiters, which may be either single 
(' ) or double  (" ) quotes; e.g. 
 ' Thi s i s  a st r i ng'  
 " School  of  Mechani cal ,  Aer ospace and Ci v i l  Engi neer i ng"  
The delimiters themselves are not part of the string. 
 
Logical constants may be either . TRUE.  or . FALSE.  
 
 
4.4 Declaration of Variables 
 
Type Declarations 
 
Variables should be declared (that is, have their type defined and memory set aside for them) before any 
executable statements. This is achieved by a type declaration statement of the form, e.g., 
   I NTEGER NUMBER_OF_PEOPLE 
   REAL RESULT 
   COMPLEX Z 
   LOGI CAL ANSWER 
 
More than one variable can be declared in each statement. e.g. 
   I NTEGER I ,  J ,  K 
 
 
Initialisation 
 
Variables can be initialised in their type-declaration statement. In this case use the double colon (: : ) separator 
must be used. Thus, the above examples might become: 
   I NTEGER : :  NUMBER_OF_PEOPLE = 20 
   REAL : :  RESULT = 0. 05 
   COMPLEX : :  Z = ( 0. 0, 1. 0)  
   LOGI CAL : :  ANSWER = . TRUE.  
 
Variables can also be initialised at compile time with a DATA statement; e.g. 
   DATA NUMBER_OF_PEOPLE,  RESULT,  Z,  ANSWER /  20,  0. 05,  ( 0. 0, 1. 0) ,  . TRUE. /  
The DATA statement must be placed before any executable statements. 
 
 
Attributes 
 
Various attributes may be specified for variables in their type-declaration statements. One such is 
PARAMETER. A variable declared with this attribute may not have its value changed within the program unit. 
It is often used to emphasise key physical or mathematical constants; e.g. 
   REAL,  PARAMETER : :  PI  = 3. 14159 
   REAL,  PARAMETER : :  GRAVI TY = 9. 81 
The double colon (: : ) must be used when attributes are specified. 
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Kind (Optional) 
 
The kind concept will not be mentioned much in this course, but it is valuable in ensuring true portability 
across platforms and one should be aware of its existence. Basically, the default memory size and format of 
storage for the various data types is not set by the standard and varies between Fortran implementations – for 
example 2 or 4 bytes for an integer, 4 or 8 bytes for a real. This affects both the largest integer that can be 
represented and the accuracy with which real numbers can be stored. If you wish true portability then you may 
wish to declare the kind type parameter explicitly; e.g. 
   I NTEGER,  PARAMETER : :  I KI ND = SELECTED_I NT_KI ND( 5)  
   I NTEGER,  PARAMETER : :  RKI ND = SELECTED_REAL_KI ND( 6, 99)  
   I NTEGER ( KI ND=I KI ND)  I  
   REAL ( KI ND=RKI ND)  R 
In this example, the first two lines work out the kind type parameters needed to store integers of up to 5 digits 
(i.e. –99999 to 99999) and real numbers of accuracy at least 6 significant figures and covering a range -1099 to 
1099. These are assigned to parameter variables IKIND and RKIND, which can then be used to declare all 
integers and reals with the required range and precision. 
 
To print out the default kind types for the Salford Fortran 95 compiler, try 
   PRI NT * ,  KI ND( 1) ,  KI ND( 1. 0)  
where the intrinsic function KI ND returns the kind type of its argument: in this case integer and real values. 
 
The ki nd parameter will not be used in this introductory course, but is described in the recommended books. 
 
 
Historical Baggage – Implicit Typing. 
 
Unless a variable was explicitly typed, older versions of Fortran implicitly assumed a type for a variable 
depending on the first letter of its name. A variable whose name started with one of the letters I - O was 
assumed to be an integer; otherwise it was assumed to be real. To admit older standards as a subset, Fortran has 
to go on doing this. However, it is appalling programming practice and it is highly advisable to: 
• use a type declaration for all variables; 
• put the I MPLI CI T NONE statement at the start of all program units (the compiler will then flag any 

variable that you have forgotten to declare). 
 
 
4.5 Numeric Operators and Expressions 
 
A numeric expression is a formula combining constants, variables and functions using the numeric intrinsic 
operators given in the following table. 
 

operator meaning precedence (1 = highest) 
* *  exponentiation (xy) 1 
*  multiplication (xy) 2 
/  division (x/y) 2 
+ addition (x+y) or unary plus (+x) 3 
-  subtraction (x–y) or unary minus (–x) 3 

 
An operator with two operands is called a binary operator. An operator with one operand is called a unary 
operator. 
 
 
Precedence 
 
Expressions are evaluated in order: highest precedence (exponentiation) first, then left to right. Brackets ( ), 
which have highest precedence of all, can be used to override this. e.g. 
 1 + 2 *  3 evaluates as    1 + (2 × 3)    or 7 
 10. 0 /  2. 0 *  5. 0 evaluates as    (10.0 / 2.0) × 5.0    or 25.0 
 5. 0 *  2. 0 * *  3 evaluates as    5.0 × (2.03)     or 40.0 
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Repeated exponentiation is the single exception to the left-to-right rule for equal precedence: 

 A * *  B * *  C evaluates as 
CBA  

 
 
Type Coercion 
 
When a binary operator has operands of different type, the weaker (usually integer) type is coerced (i.e. 
converted) to the stronger (usually real) type and the result is of the stronger type. e.g. 
 3 /  10. 0    →    3. 0 / 10. 0    →    0. 3 
  
The biggest source of difficulty is with integer division. If an integer is divided by an integer then the result 
must be an integer and is obtained by truncation towards zero. Thus, in the above example, if we had written 
3/ 10 (without a decimal point) the result would have been 0. 
 
Integer division is fraught with dangers to the unwary. Be careful when mixing reals and integers in mixed-
mode expressions. If you intend a constant to be a real number, use a decimal point! 
 
Integer division can, however, be useful. For example, 
 25 – 4 *  (  25 /  4 )  
gives the remainder (here, 1) when 25 is divided by 4. 
 
Type coercion also occurs in assignment. This time, however, the conversion is to the type of the variable 
being assigned. Suppose I  is an integer. Then the statement 
 I  = –25. 0 /  4. 0 
will first evaluate the RHS (as –6.25) and then truncate it towards zero, assigning  the value –6 to I . 
 
 
4.6 Character Operators 
 
There is only one character operator, concatenation, //: 
 ' Man'  / /  ' chest er '     gives   ' Manchest er '  
 
 
4.7 Logical Operators and Expressions 
 
A logical expression is either: 
•  a combination of numerical expressions and the relational operators 
  < less than 
  <= less than or equal 
  > greater than 
  >= greater than or equal 
  == equal 
  / = not equal 
• a combination of other logical expressions, variables and the logical operators given below. 
 
operator meaning precedence (1=highest) 
. NOT.  logical negation ( . TRUE.  → . FALSE.  and vice-versa) 1 
. AND.  logical intersection (both are . TRUE. ) 2 
. OR.  logical union (at least one is . TRUE. ) 3 
. EQV.  logical equivalence (both . TRUE.  or both . FALSE. ) 4 
. NEQV.  logical non-equivalence (one is . TRUE.  and the other . FALSE. ) 4 
 
As with numerical expressions, brackets can be used to override precedence. 
 
A logical variable can be assigned to directly; e.g. 
 L = . TRUE.  
or by using a logical expression; e.g. 
 L = A > 0. 0 . AND.  C > 0. 0 
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Logical expressions are most widely encountered in decision making; e.g. 
 I F (  DI SCRI MI NANT < 0. 0 )  PRI NT * ,  ' Root s ar e compl ex'  
 
The older forms . LT. , . LE. , . GT. , . GE. , . EQ. , . NE.  may be used instead of <, <=, >, >=, ==, / = if 
desired. 
 
Character strings can also be compared, according to the character-collating sequence used by the compiler: 
this is often (but does not have to be), ASCII or EBCDIC. The Fortran standard requires that for all-upper-case, 
all-lower-case or all-numeric expressions, normal dictionary order is preserved. Thus, for example, both the 
logical expressions 
 ' ABCD'  < ' EF'  
 ' 0123'  < ' 3210'  
are true, but 
 ' DR'  < ' APSLEY'  
is false. However, upper case may or may not come before lower case in the character-collating sequence and 
letters may or may not come before numbers, so that mixed-case expressions or mixed alphabetic-numeric 
expressions should not be compared as they could conceivably give different answers on different platforms. 
 
 
4.8 Line Discipline 
 
The usual layout of statements is one-per-line, interspersed with blank lines for clarity. This is the 
recommended form in most instances. However, 
• There may be more than one statement per line, separated by a semicolon; e.g. 

   A = 1;    B = 10;    C = 100  
This is only recommended for simple initialisation. 

 
• Each statement may run onto one or more continuation lines if there is an ampersand (&) at the end of 

the line to be continued. e.g. 
   DEGREES = RADI ANS *  PI   & 

               /  180. 0 
is the same as the single-line statement 
   DEGREES = RADI ANS *  PI  /  180. 0 

 
There may be up to 132 characters per line. However, editor defaults (and historical limits in previous versions 
of Fortran) mean that most programmers do not use lines longer than 72 characters. 
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5. REPETITION: DO AND DO WHI LE 
 
See Sample Programs – Week 2 
 
One advantage of computers is that they never get bored by repeating the same action many times. For 
example, consider the following program. 
 
PROGRAM LI NES 
!  I l l ust r at i on of  DO- l oops 
   I MPLI CI T NONE 
 
   I NTEGER L                                  !  a count er  
 
   DO L = 1,  100                              !  s t ar t  of  r epeat ed sect i on 
      PRI NT * ,  L,  '   I  must  not  t al k i n c l ass '  
   END DO                                     !  end of  r epeat ed sect i on 
 
END PROGRAM LI NES 
 
This illustrates how a DO loop may be used to carry out the same statement or set of statements many times. 
The main forms of loop structure are: 
 
(i) Deterministic DO loop – the maximum number of loops is specified: 
 
   DO variable = expression1,  expression2 [ ,  expression3]  

 
repeated section 

 
   END DO 
 
 
(ii) Non-deterministic DO loop: EXI T the loop when some criterion is met. 
   DO 

      ... 
I F (  logical expression )  EXI T 
      ... 

   END DO 
 
 
(iii) Alternative form of non-deterministic loop. 
   DO WHI LE (  logical expression )  

 
repeated section 

 
   END DO 
 
 
In the first of these, variable is an integer variable to be used as a loop counter and expression1, expression2, 
expression3 are integers or, more generally, integer expressions. expression1 and expression2 are the limits of 
the count and expression3 is the increment (which may be positive or negative). If expression3 is not specified, 
it is assumed to be 1. If expression3 is positive then the loop will stop executing once the integer variable 
exceeds expression2. 
 
In the last two examples, looping stops when some logical criterion is met. 
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DO loops can be nested (i.e. one inside another). Indentation is definitely recommended here. For example: 
 
PROGRAM NESTED 
!  I l l ust r at i on of  nest ed DO- l oops 
   I MPLI CI T NONE 
 
   I NTEGER I ,  J                                !  l oop count er s 
 
   DO I  = 1,  6                                !  s t ar t  of  out er  l oop 
      PRI NT * ,  ' Out er  l oop wi t h I  = ' ,  I  
      DO J = 1,  3                             !  s t ar t  of  i nner  l oop 
         PRI NT * ,  '  I ,  J  = ' ,  I ,  J  
      END DO 
      PRI NT *                                  !  a bl ank l i ne 
   END DO                                     !  end of  r epeat ed sect i on 
 
END PROGRAM NESTED 

 
 
The DO loop counter should be an integer. To increment in a non-integer sequence, e.g. 0.5, 0.8, 1.1, ... , define 
separate loop counters (e.g. I ), increment (e.g. DX), initial value (e.g. X0) and for each pass of the loop work 
out the value to be output, as in the example below: 
 
 
PROGRAM XLOOP 
!  I l l ust r at i on of  non- i nt eger  val ues 
   I MPLI CI T NONE 
 
   I NTEGER I                                   !  l oop count er  
   REAL DX                                    !  i ncr ement  
   REAL X0                                    !  non- i nt egr al  i ni t i al  val ue 
   REAL X                                     !  val ue t o be out put  
         
   X0 = 0. 5                                   !  set  i ni t i al  val ue 
   DX = 0. 3                                   !  set  i ncr ement  
 
   DO I  = 1,  10                               !  s t ar t  of  r epeat ed sect i on 
      X = X0 + ( I  -  1)  *  DX                   !  act ual  val ue t o be out put   
      PRI NT * ,  X 
   END DO                                     !  end of  r epeat ed sect i on 
 
END PROGRAM XLOOP 

 
If one only uses the variable X once for each of its values (as in the example above) there is no need to define 
it as a separate variable, and one could simply combine the lines 
      X = X0 + ( I  -  1)  *  DX                
      PRI NT * ,  X 
as 
      PRI NT * ,  X0 + ( I  -  1)  *  DX 
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6. DECISION MAKING: I F AND CASE 
 
See Sample Programs – Week 2  
 
Often a computer is called upon to perform one set of actions if some condition is met, and (optionally) some 
other set if it is not. This branching or conditional action can be achieved by the use of I F or CASE constructs. 
 
6.1 The I F Construct 
 
There are several forms of I F construct. 
 
(i) Single statement. 
   I F (  logical expression )  statement 
 
 
(ii) Single block of statements. 
   I F (  logical expression )  THEN 

       
things to be done if true 
 

   END I F 
 
 
(iii) Alternative actions. 
   I F (  logical expression )  THEN 

             
things to be done if true 
 

   ELSE 
             
things to be done if false 
 

   END I F 
 
 
(iv) Several alternatives (there may be several ELSE I f s, and there may or may not be an ELSE). 
   I F (  logical expression-1 )  THEN 

......... 
   ELSE I F (  logical expression-2 )  THEN 

......... 
   [ ELSE  

......... 
                          ]  
   END I F 
 
As with DO loops, I F constructs can be nested; (this is where indentation is very helpful). 
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6.2 The CASE Construct 
 
The CASE construct is a convenient (and often more readable and/or efficient) alternative to an 
I F ... ELSE I F ... ELSE construct. It allows different actions to be performed depending on the set of 
outcomes (selector) of a particular expression. 
 
The general form is: 
   SELECT CASE (  expression )  
      CASE (  selector-1 )  

block-1 
      CASE (  selector-2 )  

block-2 
      [ CASE DEFAULT 

default block 
                          ]  
   END SELECT 
 
expression is an integer, character or logical expression. It is often just a simple variable. 
selector-n is a set of values that expression might take. 
block-n is the set of statements to be executed if expression lies in selector-n. 
CASE DEFAULT is used if expression does not lie in any other category. It is optional. 
 
Selectors are lists of non-overlapping integer or character outcomes, separated by commas. Outcomes can be 
individual values (e.g. 3,  4,  5,  6) or ranges (e.g. 3: 6). These are illustrated below and in the week’s 
examples. CASE is often more efficient than an I F ... ELSE I F ... ELSE construct because only one 
expression need be evaluated. 
 
 
Example. What type of key am I pressing? 
 
PROGRAM KEYPRESS 
   I MPLI CI T NONE 
 
   CHARACTER LETTER 
 
 
   PRI NT * ,  ' Pr ess a key'  
   READ * ,  LETTER 
 
    
   SELECT CASE (  LETTER )  
 
      CASE (  ' a' ,  ' e' ,  ' i ' ,  ' o' ,  ' u' ,  ' A' ,  ' E' ,  ' I ' ,  ' O' ,  ' U'  )  
         PRI NT * ,  ' Vowel '  
 
      CASE (  ' b' : ' d' ,  ' f ' : ' h' ,  ' j ' : ' n' ,  ' p' : ' t ' ,  ' v ' : ' z ' ,  & 
             ' B' : ' D' ,  ' F' : ' H' ,  ' J ' : ' N' ,  ' P' : ' T' ,  ' V' : ' Z'    )  
         PRI NT * ,  ' Consonant '  
 
      CASE (  ' 0' : ' 9'  )  
         PRI NT * ,  ' Number '  
 
      CASE DEFAULT 
         PRI NT * ,  ' Somet hi ng el se'  
 
   END SELECT 
 
END PROGRAM KEYPRESS 
 



 
Fortran - 18 - David Apsley 

7. ARRAYS 
 
See Sample Programs – Week 2  
 
In geometry it is common to denote coordinates by x1, x2, x3 or { xi} . The elements of matrices are written as 
a11, a12, ..., amn or { aij} . These are examples of subscripted variables or arrays. 
 
It is common and convenient to denote the whole array by its unsubscripted name; e.g. x �  { xi} , a �  { aij} . The 
presence of subscripted variables is important in any programming language. The ability to refer to an array as 
a whole, without subscripts, is an element of Fortran 90/95 which makes it particularly useful in engineering. 
 
When referring to an individual element of an array, the subscripts are enclosed in parentheses; e.g. X( 1) , 
A( 1, 2) , etc.. 
 
 
7.1 One-Dimensional Arrays (Vectors) 
 
Example. Consider the following program to fit a straight line to the set of points (x1,y1), 
(x2,y2), … , (xN,yN) and then print them out, together with the best-fit straight line. The data file 
is assumed to be of the form shown right and the best-fit straight line is cmxy +=  where 
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PROGRAM LI NE_1 
   I MPLI CI T NONE 
   I NTEGER N                                  !  number  of  poi nt s 
   I NTEGER I                                   !  a count er  
   REAL X( 100) ,  Y( 100)                         !  ar r ays t o hol d t he poi nt s 
   REAL SUMX,  SUMY,  SUMXY,  SUMXX              !  var i ous i nt er medi at e sums 
   REAL M,  C                                  !  l i ne s l ope and i nt er cept  
   REAL XBAR,  YBAR                            !  mean x and y 
 
   SUMX = 0. 0;  SUMY = 0. 0;  SUMXY = 0. 0;  SUMXX = 0. 0      !   i ni t i al i se sums 
 
   OPEN (  10,  FI LE = ' pt s. dat '  )               !  open dat a f i l e;  at t ach t o uni t  10 
   READ (  10,  *  )  N                           !  r ead number  of  poi nt s 
 
   !  Read r est  of  mar ks,  one per  l i ne,  and add t o sums 
   DO I  = 1,  N                   
      READ (  10,  *  )  X( I ) ,  Y( I )  
      SUMX  = SUMX  + X( I )  
      SUMY  = SUMY  + Y( I )  
      SUMXY = SUMXY + X( I )  *  Y( I )  
      SUMXX = SUMXX + X( I )  * *  2 
   END DO 
   CLOSE (  10 )                                !  f i ni shed wi t h dat a f i l e 
 
   !  Cal cul at e best - f i t  s t r ai ght  l i ne 
   XBAR = SUMX /  N     
   YBAR = SUMY /  N 
   M = (  SUMXY /  N -  XBAR *  YBAR )  /  (  SUMXX /  N -  XBAR * *  2 )  
   C = YBAR -  M *  XBAR  
 
   PRI NT * ,  ' Sl ope = ' ,  M 
   PRI NT * ,  ' I nt er cept  = ' ,  C 
   PRI NT ' (  3(  1X,  A10 )  ) ' ,  ' x ' ,  ' y ' ,  ' mx+c'  
   DO I  = 1,  N 
      PRI NT ' (  3(  1X,  1PE10. 3 )  ) ' ,  X( I ) ,  Y( I ) ,  M *  X( I )  + C 
   END DO 
 
END PROGRAM LI NE_1 

N 
x1 y1 
x2 y2 
... 
xN yN 
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Several features of arrays can be illustrated by this example. 
 
7.2 Array Declaration 
 
Like any other variables, arrays need to be declared at the start of a program unit and memory space assigned 
to them. However, unlike scalar variables, array declarations require both a type (integer, real, complex, 
character, logical, ...) and a size (i.e. number of elements). 
 
In this case the two one-dimensional arrays X and Y can be declared as of real type with 100 elements by the 
type-declaration statement 
   REAL X( 100) ,  Y( 100)  
or using the DI MENSI ON attribute: 
   REAL,  DI MENSI ON( 100)  : :  X,  Y 
or by a separate DI MENSI ON statement: 
   REAL X,  Y 
   DI MENSI ON X( 100) ,  Y( 100)  
 
By default, the first element of an array has subscript 1. It is possible to make the array start from subscript 0 
(or any other integer) by declaring the lower array bound as well. For example, to start at 0 instead of 1: 
   REAL X( 0: 100)  
Warning: in the C programming language the default lowest subscript is 0. 
 
 
7.3 Dynamic Memory Allocation 
 
An obvious problem arises. What if the number of points N is greater than the declared size of the array (here, 
100)? Well, different compilers will do different things – all of them garbage and most resulting in crashes. 
 
One solution (which used to be required in earlier versions of Fortran) was to check for adequate space, 
prompting the user to recompile if necessary with a larger array size: 
   READ (  10,  *  )  N 
   I F (  N > 100 )  THEN 
      PRI NT * ,  ' Sor r y,  N > 100.  Pl ease r ecompi l e wi t h l ar ger  ar r ay '  
      STOP 
   END I F 
Most departmental secretaries will not be impressed with this error message. 
 
A far better solution is to use dynamic memory allocation; that is, the array size is determined (and memory 
space allocated) at run-time, not in advance during compilation. To do this one must use allocatable arrays as 
follows. 
 
(i) In the declaration statement, use the ALLOCATABLE attribute; e.g. 
   REAL,  ALLOCATABLE : :  X( : ) ,  Y( : )  
Note that the size of the arrays is not specified, but is replaced by a single colon (: ). 
        
(ii) When the arrays are needed, allocate them the required amount of memory: 
   READ (  10,  *  )  N 
   ALLOCATE (  X( N) ,  Y( N)  )  
 
(iii) When the arrays are no longer needed, recover memory by de-allocating them: 
   DEALLOCATE (  X,  Y )  
 
 
7.4 Array Input/Output and Implied DO Loops 
 
In the example, the lines 
   DO I  = 1,  N 
      READ (  10,  *  )  X( I ) ,  Y( I )  
      ... 
   END DO 
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mean that at most one pair of points can be input per line. With the single statement 
   READ (  10,  *  )  (  X( I ) ,  Y( I ) ,  I  = 1,  N )  
the program will simply read the first N data pairs (separated by spaces or commas) which it encounters. Since 
all the points are read in one go, they no longer need to be on separate lines of the input file. 
 
 
7.5 Array-handling Functions 
 
Certain intrinsic functions are built into the language to facilitate array handling. For example, the one-by-one 
summation can be replaced by the single statement 
   SUMX = SUM(  X )  
This uses the intrinsic function SUM, which adds together all elements of its array argument. Other array-
handling functions are listed in Appendix A4. 
 
 
7.6 Element-by-Element Operations 
 
Sometimes we want to do the same thing to every element of an array. In the above example, for each mark we 
form the square of that mark and add to a sum. The array expression 
   X *  X 
is a new array with elements { xi

2} .  SUM(  X *  X )  therefore produces Σxi
2. 

 
 
Using many of these array features a shorter version of the program is given below. Note that use of the 
intrinsic function SUM obviates the need for extra variables to hold intermediate sums and there is a one-line 
implied DO loop for both input and output. 
 
PROGRAM LI NE_2 
   I MPLI CI T NONE 
   I NTEGER N                                  !  number  of  poi nt s 
   I NTEGER I                                   !  a count er  
   REAL,  ALLOCATABLE : :  X( : ) ,  Y( : )             !  ar r ays t o hol d t he poi nt s 
   REAL M,  C                                  !  l i ne s l ope and i nt er cept  
   REAL XBAR,  YBAR                            !  mean x and y 
 
   OPEN (  10,  FI LE = ' pt s. dat '  )               !  open dat a f i l e;  at t ach t o uni t  10 
   READ (  10,  *  )  N                           !  r ead number  of  poi nt s 
   ALLOCATE (  X( N) ,  Y( N)  )                     !  al l ocat e memor y t o X and Y 
   READ (  10,  *  )  (  X( I ) ,  Y( I ) ,  I  = 1,  N )     !  r ead r est  of  mar ks 
   CLOSE (  10 )                                !  f i ni shed wi t h dat a f i l e 
 
   !  Cal cul at e best - f i t  s t r ai ght  l i ne 
   XBAR = SUM(  X )  /  N     
   YBAR = SUM(  Y )  /  N 
   M = (  SUM(  X *  Y )  /  N -  XBAR *  YBAR )  /  (  SUM(  X *  X )  /  N -  XBAR * *  2 )  
   C = YBAR -  M *  XBAR  
 
   PRI NT * ,  ' Sl ope = ' ,  M 
   PRI NT * ,  ' I nt er cept  = ' ,  C 
   PRI NT ' (  3(  1X,  A10     )  ) ' ,  ' x ' ,  ' y ' ,  ' mx+c'  
   PRI NT ' (  3(  1X,  1PE10. 3 )  ) ' ,  (  X( I ) ,  Y( I ) ,  M *  X( I )  + C,  I  = 1,  N )  
 
   DEALLOCATE (  X,  Y )                         !  r et r i eve memor y space 
    
END PROGRAM LI NE_2 
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7.7 Matrices and Higher-Dimension Arrays 
 
An m×n array of numbers of the form 
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is called a matrix. The typical element is denoted aij. It has two subscripts. 
 
Fortran allows matrices (two-dimensional arrays) and, in fact, arrays of up to 7 dimensions. (However, entities 
of the form aijklmno have never found much application in civil engineering!) 
 
In Fortran the declaration and use of a REAL 3×3 matrix might look like 
   REAL A( 3, 3)  
   A( 1, 1)  = 1. 0;    A( 1, 2)  = 2. 0;    A( 1, 3)  = 3. 0 
   A( 2, 1)  = A( 1, 1)  + A( 1, 3)  
            etc. 
 
 
Terminology 
 
dimension – a particular subscript 
rank – the number of subscripts (1 for a vector, 2 for a matrix etc.) 
extent – the number of elements in a particular dimension 
shape – the set of extents 
 
For example, the declaration 
   REAL X( 0: 100, 3, 3)  
declares: 
• an array of real type 
• named X 
• of rank 3 
• of extent 101 along the first, 3 along the second and 3 along the third dimension 
• of shape 101×3×3 
A typical element is, e.g., X( 50, 2, 2) . 
 
 
Matrix Multiplication 
 
Matrix multiplication can be accomplished by nested DO loops (see below). However, Fortran provides an 
intrinsic function MATMUL to do the same in a single statement. 
 
Consider the matrix multiplication C=AB, where A, B and C are 3×3 matrices declared by 
   REAL,  DI MENSI ON( 3, 3)  : :  A,  B,  C 
 
A nested DO loop construct can be used to evaluate the product; for example, 
   DO I  = 1,  3 
      DO J = 1,  3 
         C( I , J)  = A( I , 1)  *  B( 1, J)  + A( I , 2)  *  B( 2, J)  + A( I , 3)  *  B( 3, J)  
      END DO 
   END DO 
However, the multiplication can also be accomplished by the single statement 
   C = MATMUL(  A,  B )  
Reasonable? 
 
Note that, for matrix multiplication to be legitimate, the number of columns in A must equal the number of 
rows in B; i.e. the matrices are conformable. 
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7.8 Array Initialisation 
 
Sometimes it is necessary to initialise all elements of an array. This can be done by separate statements; e.g, 
   A( 1)  = 1. 0;    A( 2)  = 20. 5;    A( 3)  = 10. 0;    A( 4)  = 0. 0;    A( 5)  = 0. 0 
It can also be done with a DATA statement: 
   DATA A /  1. 0,  20. 5,  10. 0,  0. 0,  0. 0 /  
 
DATA statements can be used to initialise multi-dimensional arrays. However, the storage order of elements is 
important. In Fortran, column-major storage is used; i.e. the first subscript varies fastest so that, for example, 
the storage order of a 3×3 matrix is 
   A( 1, 1) ,  A( 2, 1) ,  A( 3, 1) ,  A( 1, 2) ,  A( 2, 2) ,  A( 3, 2) ,  A( 1, 3) ,  A( 2, 3) ,  A( 3, 3)  
Warning: this is the opposite convention to the C programming language. 
 
 
7.9 Array Assignment and Array Expressions 
 
Arrays are used where large numbers of data elements are to be treated in similar fashion. Fortran 90/95 now 
allows a ‘syntactic shorthand’  to be used whereby, if the array name is used in a numeric expression without 
subscripts, then the operation is assumed to be performed on every element of an array. This is far more 
concise than older versions of Fortran, where it was necessary to use DO-loops. 
 
For example, suppose that arrays X and Y are declared with 10 elements: 
   REAL,  DI MENSI ON( 10)  : :  X,  Y 
 
 
Assignment 
 
   X = 10. 0 
sets every element of X to the value 10.0. 
 
 
Array Expressions 
 
   Y = - 3 *  X 
Sets yi to –3xi for each element of the respective arrays. 
 
   Y = X + 3 
Although 3 is only a scalar, yi is set to xi+3 for each element of the arrays. 
 
 
Array Arguments to Intrinsic Functions 
 
   Y = SI N(  X )  
Sets yi to sin(xi) for each element of the respective arrays. 
 
 
7.10 The WHERE Construct 
 
WHERE is simply an I F construct applied to every element of an array. For example, to turn every non-zero 
element of an array A into its reciprocal, one could write 
   WHERE (  A / = 0. 0 )  
      A = 1. 0 /  A 
   END WHERE 
 
Note that the individual elements of A are never mentioned. WHERE, ELSE, ELSE WHERE, END WHERE can 
be used whenever one wants to use a corresponding I F, ELSE, ELSE I F, END I F for each element of an 
array. 
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8. CHARACTER HANDLING 
 
See Sample Programs – Week 3  
 
Fortran (FORmula TRANslation) was originally developed for engineering calculations, not word-processing. 
However, it now has extensive character-handling capabilities. 
 
 
8.1 Character Constants and Variables 
 
A character constant (or string) is a series of characters enclosed in delimiters, which may be either single (' ) 
or double (" ) quotes; e.g. 
   ' Thi s i s  a st r i ng'    or   " Thi s i s  a st r i ng"  
The delimiters themselves are not part of the string. 
 
Delimiters of the opposite type can be used within a string with impunity; e.g. 
   PRI NT * ,  " Thi s i sn' t  a pr obl em"  
However, if the bounding delimiter is to be included in the string then it must be doubled up; e.g. 
   PRI NT * ,  ' Thi s i sn' ' t  a pr obl em. '  
 
Character variables must have their length – i.e. number of characters – declared in order to set aside memory. 
Any of the following will declare a character variable WORD of length 10: 
   CHARACTER ( LEN=10)  WORD 
   CHARACTER ( 10)  WORD 
   CHARACTER WORD* 10 
(The first is my personal preference, as it is the clearest to read). 
 
To save counting characters, an assumed length (indicated by LEN=*  or, simply, * ) may be used for character 
variables with the PARAMETER attribute; i.e. those whose value is fixed. e.g. 
   CHARACTER ( LEN=* ) ,  PARAMETER : :  UNI VERSI TY = ' MANCHESTER'  
 
If LEN is not specified for a character variable then it defaults to 1; e.g. 
   CHARACTER LETTER 
 
Character arrays are simply subscripted character variables. Their declaration requires a dimension statement 
in addition to length; e.g. 
   CHARACTER ( LEN=3) ,  DI MENSI ON( 12)  : :  MONTHS 
or, equivalently, 
   CHARACTER ( LEN=3)  MONTHS( 12)  
This array might then be initialised by, for example, 
   DATA MONTHS /  ' Jan' ,  ' Feb' ,  ' Mar ' ,  ' Apr ' ,  ' May' ,  ' Jun' ,  & 
                 ' Jul ' ,  ' Aug' ,  ' Sep' ,  ' Oct ' ,  ' Nov' ,  ' Dec'    /  
 
 
8.2 Character Assignment 
 
When character variables are assigned they are filled from the left and padded with blanks if necessary. For 
example, if UNI VERSI TY is a character variable of length 7 then 
   UNI VERSI TY = ' UMI ST'      fills UNI VERSI TY with ' UMI ST  '  
   UNI VERSI TY = ' Manchest er '     fills UNI VERSI TY with ' Manches'  
 
 
8.3 Character Operators 
 
The only character operator is / /  (concatenation) which simply sticks two strings together; e.g. 
   ' Man'  / /  ' chest er '    →   ' Manchest er '  
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8.4 Character Substrings 
 
Character substrings may be extended in a similar fashion to sub-arrays; (in a sense, a character string is an 
array – a vector of single characters). e.g. if CI TY=' Manchest er '  then 
   CI TY( 2: 5) =' anch'  
   CI TY( : 3) =' Man'  
   CI TY( 7: ) =' s t er '  
 
 
8.5 Comparing and Ordering 
 
Each computer system has a character-collating sequence that specifies the intrinsic ordering of the character 
set. Two of the most common are ASCII and EBCDIC. ‘Less than’  (<) and ‘greater than’  (>) refer to the 
position of the characters in this collating sequence. 
 
The Fortran standard requires that upper-case letters A- Z and lower-case letters a- z  are separately in 
alphabetical order, and numerals 0- 9 are in numerical order, and that a blank space comes before both. It does 
not, however, specify whether numbers come before or after letters in the collating sequence, or lower case 
comes before or after upper case. Provided there is consistent case, strings can be compared on the basis of 
dictionary order, but the standard gives no guidance when comparing letters with numerals or upper with lower 
case. 
 
Example. The following logical expressions are both true: 
   ' Dr '  > ' Apsl ey '  
   ' 1st  year '  < ' 2nd year '  
 
 
8.6 Intrinsic Subprograms With Character Arguments 
 
The more common character-handling routines are given in Appendix A4. A full set is given in Hahn (1994). 
 
Position in the Collating Sequence 
 
CHAR(  I  )  character in position I  of the system collating sequence; 
I CHAR(  C )  position of character C in the system collating sequence. 
 
The system may or may not use ASCII as a collating system, but the following routines are always available: 
ACHAR(  I  )  character in position I  of the ASCII collating sequence; 
I ACHAR(  C )  position of character C in the ASCII collating sequence. 
 
The collating sequence may be used, for example, to sort names into alphabetical order or convert between 
upper and lower case, as in the following example. 
 
Example. Since the separation of  ‘b’  and ‘B’ , ‘c ’  and ‘C’  etc. in the collating sequence is the same as that 
between ‘a’  and ‘A’ , the following subroutine may be used successively for each character to convert lower to 
upper case. 
 
SUBROUTI NE UC(  LETTER )  
   I MPLI CI T NONE 
 
   CHARACTER ( LEN=1)  LETTER 
 
 
   I F (  LETTER >= ' a'  . AND.  LETTER <= ' z '  )  THEN 
      LETTER = CHAR(  I CHAR(  LETTER )  + I CHAR(  ' A'  )  -  I CHAR(  ' a'  )  )  
   END I F 
 
END SUBROUTI NE UC 
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Length of String 
 
LEN(  STRI NG )  declared length of STRI NG, even if it contains trailing blanks; 
TRI M(  STRI NG )  same as STRI NG but without any trailing blanks; 
LEN_TRI M(  STRI NG )  length of STRI NG with any trailing blanks removed. 
 
 
Justification 
 
ADJUSTL(  STRI NG )  left-justified STRI NG 
ADJUSTR(  STRI NG )  right-justified STRI NG 
 
 
Finding Text Within Strings 
 
I NDEX(  STRI NG,  SUBSTRI NG )  position of first (i.e. leftmost) occurrence of SUBSTRI NG in STRI NG 
SCAN(  STRI NG,  SET )  position of first occurrence of any character from SET in STRI NG 
VERI FY(  STRI NG,  SET )  position of first character in STRI NG that is not in SET 
 
Each of these functions returns 0 if no such position is found. 
 
To search for the last (i.e. rightmost) rather than first occurrence, add a third argument . TRUE. , e.g.: 

I NDEX(  STRI NG,  SUBSTRI NG,  . TRUE.  )  
returns the position of the last occurrence of SUBSTRI NG in STRI NG. 
 
  
 
 
 



 
Fortran - 26 - David Apsley 

9. FUNCTIONS AND SUBROUTINES 
 
See Sample Programs – Week 3  
 
All major computing languages allow complex and/or repetitive programs to be broken down into simpler 
procedures, each carrying out particular well-defined tasks, often with different values of certain parameters. In 
Fortran these subprograms are called subroutines and functions. Examples of the action carried out by a single 
subprogram might be: 

• calculate the distance 22 yxr += of a point (x,y) from the origin; 

• calculate 1.2)...1(! −= nnn for a positive integer n 

 
 
9.1 Intrinsic Subprograms 
 
Certain subprograms – intrinsic subprograms – are defined by the Fortran standard and must be provided by an 
implementation’s standard libraries. For example, the statement 
   Y = X *  SQRT(  X )  
invokes an intrinsic function SQRT, with argument X, and returns a value (in this case, the square root of its 
argument) which is entered in the numeric expression. 
 
Useful mathematical intrinsic functions are listed in Appendix A4. The complete set required by the standard is 
given in Hahn (1994). Particular Fortran implementations may supply additional routines; for example, Salford 
Fortran includes many plotting routines and an interface (Cl ear Wi n+) to the Windows operating system.  
 
 
9.2 Program Units 
 
There are four types of program unit: 
 main programs 
 subroutines 
 functions 
 modules 
 
Each source file may contain one or more program units and is compiled separately. (This is why one requires 
a link stage after compilation.) The advantage of separating subprograms between source files is that other 
programs can make use of common routines. 
 
 
Main Programs 
 
Every Fortran program must contain exactly one main program which should start with a PROGRAM 
statement. This may invoke functions or subroutines which may, in turn, invoke other subprograms. 
 
 
Subroutines 
 
A subroutine is invoked by 
   CALL subroutine-name ( argument list )  
The subroutine carries out some action according to the value of the arguments. It may or may not change the 
values of these arguments. 
 
 
Functions 
 
A function is invoked simply by using its name (and argument list) in a numeric expression; e.g. 
   DI STANCE = RADI US(  X,  Y )  
Within the function’s source code its name (without arguments) is treated as a variable and should be assigned 
a value, which is the value of the function on exit – see the example below. A function should be used when a 
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single (usually numerical, but occasionally character or logical) value is to be returned. It is permissible, but 
poor practice, for a function to change its arguments – a better vehicle in that case would be a subroutine. 
 
 
Modules 
 
Functions and subroutines may be internal (i.e. CONTAI Ned within and only accessible to one particular 
program unit) or external (and accessible to all). In this course we focus on the latter. Related internal routines 
are better gathered together in special program units called modules; their contents are then made available 
collectively to other program units by the initial statement 
   USE module-name 
 
The basic forms of main program, subroutines and functions are very similar and are given below. As usual, [ ] 
denotes something optional but, in these cases, it is strongly recommended. 
 

 
The first line is called the subprogram statement and defines the type of program unit, its name and its 
arguments. FUNCTION subprograms must also have a type. This may be declared in the subprogram statement 
or in a separate type declaration within the routine itself. 
 
Subprograms pass control back to the calling program when they reach the END statement. Sometimes it is 
required to pass control back before this. This is effected by the RETURN statement. A similar early death can 
be effected in a main program by a STOP statement. 
 
Many actions can be coded as either a function or a subroutine. For example, consider a program which 

calculates distance from the origin, 2/122 )( yxr += : 
 

Main program 
 
[ PROGRAM [ name]] 
   USE statements 
   [ I MPLI CI T NONE]  
   type declarations 
   executable statements 
END [ PROGRAM [ name] ]  

Subroutines 
 
SUBROUTI NE name (argument-list) 
   USE statements 
   [ I MPLI CI T NONE]  
   type declarations 
   executable statements 
END [ SUBROUTI NE [ name] ]  

 

Functions 
 
[type] FUNCTI ON name (argument-list) 
   USE statements 
   [ I MPLI CI T NONE]  
   type declarations 
   executable statements 
END [ FUNCTI ON [ name] ]  
 

(Using a function) 
 
PROGRAM EXAMPLE 
   I MPLI CI T NONE 
 
   REAL X,  Y 
   REAL,  EXTERNAL : :  RADI US 
 
   PRI NT * ,  ' I nput  X,  Y'  
   READ * ,  X,  Y 
   PRI NT * ,  ' Di st ance = ' ,  RADI US(  X,  Y )  
 
END PROGRAM EXAMPLE 
 
! ========================= 
 
REAL FUNCTI ON RADI US(  A,  B )  
   I MPLI CI T NONE 
   REAL A,  B 
 
   RADI US = SQRT(  A * *  2 + B * *  2 )  
 
END FUNCTI ON RADI US 

 

(Using a subroutine) 
 
PROGRAM EXAMPLE 
   I MPLI CI T NONE 
 
   REAL X,  Y 
   REAL RADI US 
   EXTERNAL DI STANCE 
 
   PRI NT * ,  ' I nput  X,  Y'  
   READ * ,  X,  Y 
   CALL DI STANCE(  X,  Y,  RADI US )  
   PRI NT * ,  ' Di st ance = ' ,  RADI US 
 
END PROGRAM EXAMPLE 
 
! ========================= 

 
SUBROUTI NE DI STANCE(  A,  B,  R )  
   I MPLI CI T NONE 
   REAL A,  B,  R 
 
   R = SQRT(  A * *  2 + B * *  2 )  
 
END SUBROUTI NE DI STANCE 
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Note that, in the first example, the calling program must declare the type of the function RADI US amongst its 
other type declarations. 
 
 It is optional, but good practice, to identify external functions or subroutines by using either an EXTERNAL 
attribute in the type statement (as in the first example) or a separate EXTERNAL statement (as in the second 
example). This makes clear what external routines are being used and ensures that if the Fortran 
implementation supplied an intrinsic routine of the same name then the external routine would override it.  
 
Note that all variables in the functions or subroutines above have scope the program unit in which they are 
declared; that is, they have no connection with any variables of the same name in any other program unit. 
 
 
9.3 Subprogram Arguments 
 
The arguments in the subprogram statement are called dummy arguments: they exist only for the purpose of 
defining this subprogram and have no connection to other variables of the same name in other program units. 
The arguments used when the subprogram is actually invoked are called the actual arguments. They may be 
variables (e.g. X, Y), constants (e.g. 1. 0, 2. 0) or expressions (e.g. 3. 0+X, 2. 0/ Y), but they must be of the 
same type and number as the dummy arguments. For example, the RADI US function above could not be 
invoked as RADI US(  X )  (too few arguments) or as RADI US( 1,  2)  (arguments of the wrong type). 
 
(You may wonder how it is, then, that many intrinsic subprograms can be invoked with different types of 
argument. For example, in the statement 
   Y = EXP(  X )  
X may be real or complex, scalar or array. This is achieved by a useful, but highly advanced, process known as 
overloading, which is way beyond the scope of this course.) 
 
 
Passing by Name/Passing by Reference 
 
In Fortran, if the actual arguments are variables, they are passed by reference, and their values will change if 
the values of the dummy arguments change in the subprogram unit. If, however, the actual arguments are either 
constants or expressions, then the arguments are passed by value; i.e. the values are copied into the 
subprogram’s dummy arguments. 
 
Warning: in C or C++ all arguments are passed by value – a feature that necessitates the use of pointers. 
 
 
Declaration of Intent 
 
Because input variables passed as arguments may be changed unwittingly if the dummy arguments change 
within a subprogram, or, conversely, because a particular argument is intended as output and so must be 
assigned to a variable (not a constant or expression), it is good practice to declare whether dummy arguments 
are intended as input or output by using the I NTENT attribute. e.g. in the above example: 
   SUBROUTI NE DI STANCE(  A,  B,  R )  
      REAL,  I NTENT( I N)  : :  A,  B 
      REAL,  I NTENT( OUT)  : :  R 
This signifies that dummy arguments A and B must not be changed within the subroutine and that the third 
actual argument must be a variable. There is also an I NTENT( I NOUT)  attribute. 
 
 
9.4 The SAVE Attribute 
 
By default, variables declared within a subprogram do not retain their values between successive calls to the 
same subprogram. This behaviour can be overridden by the SAVE attribute; e.g. 
   REAL,  SAVE : :  VALUE 
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9.5 Array Arguments 
 
Arrays can be passed as arguments in much the same way as scalars, except that the subprogram must know 
the dimensions of the array. This can be achieved in a number of ways, the most common being: 
• Fixed array size – usually for smaller arrays such as coordinate vectors; e.g. 
     SUBROUTI NE GEOMETRY(  X )  
            REAL X( 3)  
 
• Pass the array size as an argument; e.g. 
    SUBROUTI NE GEOMETRY(  NDI M,  X )  
       REAL X( NDI M)  
  
To avoid errors, array dummy arguments should have the same dimensions and shape as the actual arguments.  
Dummy arguments that are arrays must not have the ALLOCATABLE attribute. Their size must already have 
been declared or allocated in the invoking program unit. 
 
 
9.6 Character Arguments 
 
Dummy arguments of character type behave in a similar manner to arrays – their length must be made known 
to the subprogram. However, a character dummy argument may always be declared with assumed length 
(determined by the length of the actual argument); e.g. 
      CALL EXAMPLE(  ' Davi d'  )  
      ... 
   SUBROUTI NE EXAMPLE(  PERSON )  
      CHARACTER ( LEN=* )  PERSON 
 
There are a large number of intrinsic character-handling routines (see Hahn, 1994). Some of the more useful 
ones are given in Appendix A4. 
 
 
9.7 Modules 
 
See Sample Programs – Week 4  
 
Modules are used to: 
• make a large number of variables accessible to several program units without the need for a large and 

unwieldy argument list; 
• collect together related internal subprograms. 
 
A module has the form: 
MODULE module-name 
   type declarations 
   [ CONTAI NS 
      internal subprograms] 
END [ MODULE [ module-name] ]  

 
Each module’s source code should be placed in its own . f 95 file and compiled before any program which 
USEs it. Compilation results in a special file with the same root name and filename extension . mod . It is then 
made accessible to any main program or subprogram by the statement 
   USE module-name 
All variables, executable code and internal subprograms in the module are then made available to any program 
unit which USEs this module. 
 
A particular advantage is that changes during program development to the set of global variables used need 
only be made in one source file rather than in numerous program units and argument lists. Modules, which 
were introduced with Fortran 90, make the I NCLUDE statements and COMMON-block features of earlier 
versions of Fortran redundant. 
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10. ADVANCED INPUT/OUTPUT 
 
See Sample Programs – Week 4  
 
Hitherto we have used list-directed input/output (i/o) with the keyboard and screen: 
   READ * ,  list 
   PRI NT * ,  list 
This section describes how to: 
• use formatted output to control the layout of results; 
• read from and write to files. 
 
 
10.1 READ and WRITE 
 
General i/o is performed by the statements 
   READ (  unit,  format )  list 
   WRI TE (  unit,  format )  list 
 
unit can be one of: 
• an asterisk * , meaning the standard i/o device (usually the keyboard/screen); 
• a unit number in the range 1-99 which has been attached (see below) to a particular i/o device; 
• a character variable (internal file) – this is the simplest way of interconverting numbers and strings. 
 
format can be one of: 
• an asterisk * , meaning list-directed i/o; 
• a label associated with a FORMAT statement containing a format specification; 
• a character constant or expression evaluating to a format specification. 
 
list is a set of variables or expressions to be input or output. 
 
 
10.2 Input/Output With Files 
 
Before an external file can be read from or written to, it must be associated with a unit number by the OPEN 
statement. e.g. 
   OPEN (  10,  FI LE = ' i nput . dat '  )  
One can then read from the file using 
   READ (  10,  ... )  ... 
or write to the file using 
   WRI TE (  10,  ... )   ... 
 
Although units are automatically disconnected at program end it is good practice (and it frees the unit number 
for re-use) if it is explicitly closed when no longer needed. For the above example, this means: 
   CLOSE (  10 )  
 
In general the unit number (10 in the above example) may be any number in the range 1-99. Historically, 
however, 5 and 6 have been preconnected to the standard input and standard output devices, respectively. 
 
The example above shows OPEN used to attach a file for sequential (i.e. beginning-to-end), formatted (i.e. 
human-readable) access. This is the default and is all we shall have time to cover in this course. However, 
Fortran can be far more flexible – see for example, Hahn (1994). The general form of the OPEN statement for 
reading or writing a non-temporary file is 
   OPEN ( [ UNI T = ] unit,  FI LE = file[ ,  specifiers]  )  
There may be additional specifiers which dictate the type of access. These include: 
• ACCESS = ' SEQUENTI AL'   (the default) or ' DI RECT'  
• FORM = ' FORMATTED'  (the default) or ' UNFORMATTED'  
• STATUS = ' UNKNOWN'  (the default), ' OLD' , ' NEW'  or ' REPLACE'  
• ERR = label 
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For example, 
  OPEN ( 12,  FI LE = ' mydat a. t xt ' ,  ACCESS = ' SEQUENTI AL' ,  STATUS = ' OLD' ,  ERR = 999)  
will branch to the statement with label 999 if file mydat a. t xt  isn't found. 
 
The general form of the CLOSE statement is 
   CLOSE (  [ UNI T = ] unit[ ,  STATUS = status]  )  
where status may be either ' KEEP'  (the default) or ' DELETE' . 
 
 
10.3 Formatted Output 
 
Example. The following code fragment indicates how I , F and E edit specifiers display numbers in integer, 
fixed-point and floating-point formats. The layout is determined by the FORMAT statement at label 100. 
 
   WRI TE (  * ,  100 )  55,  55. 0,  55. 0 
   100 FORMAT (  1X,  ' I ,  F and E f or mat :  ' ,  I 3,  1X,  F5. 2,  1X,  E8. 2 )  
 
This outputs (to the screen) the line 
   I ,  F and E f or mat s:   55 55. 00 0. 55E+02 
 
 
Terminology 
 
A record is an individual line of input/output. 
A format specification describes how data is laid out in (one or more) records. 
A label is a number in the range 1- 99999 preceding a statement on the same line. The commonest uses are in 

conjunction with FORMAT statements and to indicate where control should pass following an i/o error. 
 
 
Edit Descriptors 
 
A format specification consists of a series of edit descriptors (e.g. I 4, F7. 3) separated by commas and 
enclosed by brackets. The commonest edit descriptors are: 
 I w integer in a field of width w; 
 Fw.d real, fixed-point format, in a field of width w with d decimal places; 
 Ew.d real, floating-point (exponential) format in a field of width w with d decimal places; 
 nPEw.d floating point format as above with n significant figures in front of the decimal point; 
 Lw logical value (T or F) in a field of width w; 
 Aw character string in a field of width w; 
 A character string of length determined by the output list; 
 ' text'  a character string actually placed in the format specification; 
 nX n spaces 
 Tn move to position n of the current record; 
 /  start a new record; 
This is only a fraction of the available edit descriptors – see Hahn (1994). 
 
For numerical output, if the required character representation is less than the specified width then it will be 
right-justified in the field. If the required number of characters exceeds the specified width then the field will 
be filled with asterisks. For example, an attempt to write 999 with edit descriptor I 2 will result in * * . 
 
The format specifier will be used repeatedly until the output list is exhausted. Each use will start a new record. 
For example, 
   WRI TE (  * ,  ' (  1X,  I 2,  1X,  I 2,  1X,  I 2 ) '  )  (  I ,  I  = 1,  5 )  
will produce the following lines of output: 
   1  2  3 
   4  5 
If the whole format specifier isn’ t required (as in the last line of the above example) that doesn’ t matter: the 
rest is simply ignored. 
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Repeat Counts 
 
Format specifications can be simplified by collecting repeated sequences together in brackets with a repeat 
factor. For example, the above code example could also be written 
   WRI TE (  * ,  ' (  3(  1X,  I 2 )  ) '  )  (  I ,  I  = 1,  5 )  
 
 
Alternative Formatting Methods 
 
The following are all equivalent means of specifying the same output format. 
 
WRI TE (  * ,  150 )  X 
150 FORMAT (  1X,  F5. 2 )  
 
WRI TE (  * ,  ' (  1X,  F5. 2 ) '  )  X 
 
CHARACTER ( LEN=* ) ,  C = ' (  1X,  F5. 2 ) '  
WRI TE (  * ,  C )  X 

 
 
Historical Baggage: Carriage Control 
 
It is recommended that the first character of an output record be a blank. This is best achieved by making the 
first edit specifier either 1X (one blank space) or T2 (start at the second character of the record). In the earliest 
versions of Fortran the first character effected line control on a line printer. A blank meant ‘start a new record’ . 
Although such carriage control is long gone, some i/o devices may still ignore the first character of a record. 
 
 
10.4 The READ Statement 
 
The general form of the READ statement is 
   READ (  unit,  format[ ,  specifiers]  )  
unit and format are as for the corresponding WRI TE statement. However, format is seldom anything other than 
*  (i.e. list-directed input) with input data separated by blank spaces.  
 
Some useful specifiers are: 
   I OSTAT = integer-variable assigns integer-variable with a number indicating status 
   ERR = label jump to label on an error (e.g. missing data or data of the wrong type); 
   END = label jump to label when the end-of-file marker is reached. 
IOSTAT returns zero if the read is successful, different negative integers for end-of-file (EOF) or end-of-
record (EOR), and positive integers for other errors. (Salford Fortran: –1 means EOF and –2 means EOR.) 
 
 
10.5 File Positioning 
 
Non-Advancing Output 
 
Usually, each READ or WRITE statement will conclude with a carriage return/line feed. This can be prevented 
with an ADVANCE = ' NO'  specifier; e.g. 
   WRI TE (  * ,  * ,  ADVANCE = ' NO'  )  ' Ent er  a number :  '  
   READ * ,  I  
 
 
Repositioning Input Files 
 
   REWI ND unit repositions the file attached to unit at the first record. 
   BACKSPACE unit repositions the file attached to unit at the previous record. 
Obviously, neither will work if unit is attached to the keyboard! 
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APPENDICES 
 
A1. Order of Statements in a Program Unit 
 
If a program unit contains no internal subprograms then the structure of a program unit is as follows. 
 

PROGRAM, FUNCTI ON, SUBROUTI NE or MODULE statement 
USE statements 
I MPLI CI T NONE statement 

PARAMETER and 
DATA statements 

type declarations 

FORMAT 
statements 

executable statements 

END statement 
 
 
 
Where internal subprograms are to be used, a more general form would look like: 
 

PROGRAM, FUNCTI ON, SUBROUTI NE or MODULE statement 
USE statements 
I MPLI CI T NONE statement 

PARAMETER and 
DATA statements 

type declarations 

FORMAT 
statements 

 
 

executable statements 
 
 

CONTAI NS  
 
 

internal subprograms 
 
 

END statement 
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A2. Fortran Statements 
 
The following list is of the more common statements and is not exhaustive. A more complete list may be found 
in, e.g., Hahn (1994). To dissuade you from using them, the table does not include elements of earlier versions 
of Fortran – e.g. COMMON blocks, DOUBLE PRECI SI ON real type, I NCLUDE statements, CONTI NUE and 
(the truly awful!) GOTO – whose functionality has been replaced by better elements of Fortran 90/95. 
 
ALLOCATE Allocates dynamic storage. 
BACKSPACE  Positions a file before the preceding record. 
CALL Invokes a subroutine. 
CASE Allows a selection of options. 
CHARACTER Declares character data type. 
CLOSE Disconnects a file from a unit. 
COMPLEX Declares complex data type. 
CONTAI NS Indicates presence of internal subprograms. 
DATA Used to initialise variables at compile time. 
DEALLOCATE Releases dynamic storage. 
DI MENSI ON Specifies the size of an array. 
DO Start of a repeat block. 
DO WHI LE Start of a block to be repeated while some condition is true. 
ELSE, ELSE I F, ELSE WHERE Conditional transfer of control. 
END Final statement in a program unit or subprogram. 
END DO, END I F, END SELECT End of relevant construct. 
EQUI VALENCE Allows two variables to share the same storage. 
EXI T Allows exit from within a DO construct. 
EXTERNAL Specifies that a name is that of an external procedure. 
FORMAT Specifies format for input or output. 
FUNCTI ON Names a function subprogram. 
I F Conditional transfer of control. 
I MPLI CI T NONE Suspends implicit typing (by first letter). 
I NTEGER Declares integer type. 
LOGI CAL Declares logical type. 
MODULE Names a module. 
OPEN Connects a file to an input/output unit. 
PRI NT Send output to the standard output device. 
PROGRAM Names a program. 
READ Transfer data from input device. 
REAL Declares real type. 
RETURN Returns control from a subprogram before hitting the END statement. 
REWI ND Repositions a sequential input file at its first record. 
SELECT CASE Transfer of control depending on the value of some expression. 
STOP Stops a program before reaching the END statement. 
SUBROUTI NE Names a subroutine. 
TYPE Defines a derived type. 
USE Enables access to entities in a module. 
WHERE I F-like construct for array elements. 
WRI TE Sends output to a specified unit. 
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A3. Type Declarations 
 
Type statements: 
 I NTEGER 
 REAL 
 COMPLEX 
 LOGI CAL 
 CHARACTER 
 TYPE ( user-defined, derived types)  
 
The following attributes may be specified. 
 ALLOCATABLE 
 DI MENSI ON 
 EXTERNAL 
 I NTENT 
 I NTRI NSI C 
 OPTI ONAL 
 PARAMETER 
 POI NTER 
 PRI VATE 
 PUBLI C 
 SAVE 
 TARGET 
Variables may also have a declared KI ND. 
 
 
A4. Intrinsic Routines 
 
A comprehensive list can be found in Hahn, 1994. 
 
Mathematical Functions 
(Arguments X, Y etc. can be real or complex, scalar or array unless specified otherwise) 

COS(  X ) , SI N(  X ) , TAN(  X )   – trigonometric functions (arguments are in radians) 
ACOS(  X ) , ASI N(  X ) , ATAN(  X )  – inverse trigonometric functions 
ATAN2(  Y,  X )  -  inverse tangent of Y/ X in the range -π to π (real arguments) 
COSH(  X ) , SI NH(  X ) , TANH(  X )  – hyperbolic functions 
EXP(  X ) , LOG(  X ) , LOG10(  X )  – exponential and logarithmic functions 
SQRT(  X )  – square root 
ABS(  X )  – absolute value (integer, real or complex) 

 MAX(  X1,  X2,  ... ) , MI N(  X1,  X2,  ... )  – maximum and minimum (integer or real) 
  MODULO(  X,  Y )  – X modulo Y (integer or real) 
 MOD(  X,  Y )  – remainder when X is divided by Y 
 
Type Conversions 
 I NT(  X )  – converts real to integer type, truncating towards zero 
 NI NT(  X )  – nearest integer 
 CEI LI NG(  X ) , FLOOR(  X )  – nearest integer greater than or equal, less than or equal  
 REAL(  X )  – convert to real 
 CMPLX(  X )  or CMPLX(  X,  Y )  – real to complex 
 CONJG(  Z )  – complex conjugate (complex Z) 
 AI MAG(  Z )  – imaginary part (complex Z) 
 SI GN(  X,  Y )  – absolute value of X times sign of Y 
 
Character-Handling Routines 

CHAR(  I  )  – character in position I  of the system collating sequence; 
I CHAR(  C )  – position of character C in the system collating sequence. 
ACHAR(  I  )  – character in position I  of the ASCII collating sequence; 
I ACHAR(  C )  – position of character C in the ASCII collating sequence. 
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LEN(  STRI NG )  – declared length of STRI NG, even if it contains trailing blanks; 
TRI M(  STRI NG )  – same as STRI NG but without any trailing blanks; 
LEN_TRI M(  STRI NG )  – length of STRI NG with any trailing blanks removed. 

 
ADJUSTL(  STRI NG )  – left-justified STRI NG 
ADJUSTR(  STRI NG )  – right-justified STRI NG 

 
I NDEX(  STRI NG,  SUBSTRI NG )  – position of first occurrence of SUBSTRI NG in STRI NG 
SCAN(  STRI NG,  SET )  – position of first occurrence of any character from SET in STRI NG 
VERI FY(  STRI NG,  SET )  – position of first character in STRI NG that is not in SET 

 
Array Functions 
 DOT_PRODUCT(  vector_A,  vector_B )  – scalar product (integer or real) 
 MATMUL(  matrix_A,  matrix_B )  – matrix multiplication (integer or real) 
 TRANSPOSE(  matrix )  – transpose of a 2×2 matrix 
 MAXVAL(  arra y) , MI NVAL( array ) – maximum and minimum values (integer or real) 
 PRODUCT(  arra y) – product of values (integer, real or complex) 
 SUM(  arra y)  – sum of values (integer, real or complex) 
 
 
A5. Operators 
 
Numeric Intrinsic Operators 
 

Operator Action Precedence (1 is highest) 
* *  Exponentiation 1 
*  Multiplication 2 
/  Division 2 
+ Addition or unary plus 3 
-  Subtraction or unary minus 3 

 
 
Relational Operators 
 

Operator Operation 
<  or  . LT.  less than 
<= or  . LE.  less than or equal 
== or  . EQ.  equal 
/ = or  . NE.  not equal 
>  or  . GT.  greater than 
>= or  . GE.  greater than or equal 

 
 
Logical Operators 
 

Operator Action Precedence (1 is highest) 
. NOT.  logical negation 1 
. AND.  logical intersection 2 
. OR.  logical union 3 

. EQV.  logical equivalence 4 
. NEQV.  logical non-equivalence 4 

 
 
Character Operators 
 
/ /   concatenation 


