
ICCP Project 2 - Advanced Monte Carlo Methods
Choose one of the three options below

Introduction

In statistical physics Monte Carlo methods are considered to have started in the Manhattan

project (1940’s) during which J. von Neumann, S. Ulam, N. Metropolis and R. Feynman used

random numbers to estimate neutron scattering and absorption rates in materials. The Metropolis

method originated in the paper: ”Equation of state calculations by very fast computing machines”,

by N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, M. Teller and E. Teller, J. Chem. Phys. 21.

1087 (1953). A recent retrospective ”Marshall Rosenbluth and the Metropolis algorithm”, Physics

of Plasmas 12, 57303 (2005) describes some of the history and makes it clear that Metropolis ac-

tually had little to do with the development of what is now called the Metropolis method. The

credit should really go to Rosenbluth and Teller.

The Metropolis method is the most widely used Monte Carlo method. Monte Carlo methods

can be considered to be improvements or variations on other random sampling methods such as

importance sampling, which have a longer history. A few examples of the use of Monte Carlo

methods in physics are:

(i) Thermodynamic quantities in statistical and many body physics

(ii) Multiple integrals in mathematics and analysis

(iii) Reaction-diffusion problems in chemical engineering and geophysics

(iv) Polymer or protein conformations

(v) Particle showers in Nuclear and HEP

Note that MC methods do not replace a theoretical understanding of the problem. Instead a deep

theoretical understanding is required before the correct MC simulation can be set up. Actually

the literature is full of incorrect simulations, due to either poor input physics or poor quality data

analysis. MC methods could take up an entire course in any one of the areas listed above and

there are a large number of special purpose MC codes. The mathematics of the method has also

attracted a lot of effort where the Metropolis method is often called Markov chain MC.

Monte Carlo methods can be used to find the average properties of classical or quantum me-

chanical many body systems. In quantum mechanics, the average value of an operator Ô is found

1



using

< Ô >=
tr(Ôe−βĤ)

tr(e−βĤ)
(1)

where Ĥ is the Hamiltonian and β = 1/(kBT) with kB Boltzmann’s constant and T the temper-

ature. In classical physics, the operator is diagonal and the trace (tr) reduces to a sum over the

energies or eigenvalues of the system leading to the classical expression,

< O >=
∑c Oce−βH(c)

∑c e−βH(c)
(2)

where c labels a configuration or eigenfunction of the system.

ICCP project 2 has three options covering different advanced MC methods. These options are

outlined below. You (and your Dutch collaborators) can choose any one of the following three

Monte Carlo projects. Moreover for each project there are two possible algorithms. The MSU

participant could do one algorithm while the dutch group could do the other. It would be good

to compare the results and algorithms for each project. Problem (i) Classical Monte Carlo sim-

ulation of a coarse grained polymer chain model. For this project the two algorithms are: (a)

Rosenbluth/PERM algorithm; (b) Pivot algorithm. You will calculate the radius of gyration and

end-to-end distance of the chain as a function of the number of monomers in the chain (N), and

as a function of temperature (T). At low temperatures the chain is a globule while at high temper-

atures it is a coil. It is also possible to use MD for this problem so one person could extend their

MD code to this problem and compare with the MC results. Problem (ii) Classical Cluster Monte

Carlo simulation of the phase transition in spin half ferromagnetic Ising models. For this project

the two algorithms are: (a) Swensden-Wang algorithm; (b) Wolff algorithm. You will calculate the

magnetization, susceptibility and specific heat as a function of temperature and compare to the

results of the simple Metropolis approach. You can extract the critical exponent for the magnetiza-

tion near the phase transition for Ising models on square and cubic lattices. Problem (iii) Quantum

Monte Carlo simulation of the Helium atom and/or Hydrogen molecule. The two algorithmic

ap- proaches used here are: (a) The variational method (Hydrogen molecule); (b) Diffusion Monte

Carlo (Helium atom). For the variational approach a Monte Carlo method is used to evaluate

an integral arising in the problem. In this calculation you will find the total electronic energy of
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the system, the probabibility density. For the probability density you can compare with the non-

interacting electron model to see the effects of Coulomb interactions. More details are given below.

Option 1: Pivot and Rosenbluth-PERM MC simulation of Polymers [1]

MC simulation of polymers is difficult due to the fact that most local MC moves do not change

the polymer configuration much as many local moves are rejected due to overlap with other parts

of the polymer chain [1]. Rosenbluth and Rosenbluth invented a method to overcome this diffi-

culty and PERM [1] is a further advance in the method. A second approach, the pivot algorithm

was invented later and is best for extended systems. MD methods are also often used and are also

but enable simulation of polymer collapse at low temperature.

To begin we need a model for the polymer chain [1]. Note that similar ideas apply to proteins

and DNA, but the potentials used are more complex. The model we use for a polymer chain

is the so-called bead-spring model that is a standard in polymer physics. The model consists

of beads connected to each other by springs. The location of each bead is ~ri, where i = 1...N

labels the N beads in the polymer chain. The springs have the Hooke law restoring force k(|~ri −

~ri+1| − l0)2 where l0 is the bond length characteristic of the polymer of interest e.g. for alkanes

l = 1.54Angstrom. In many cases this restoring force is much stronger than all other forces in the

problem, so the bond lengths along the chain are set to l0. In addition in polymers there is a bond

angle force that favors certain bond angles, for example for alkanes it is about 108 degrees, we take

this to be θ0. The restoring force for these angles is taken to be α(θ − θ0)2. Finally the beads along

the chain also interact through so-called “non-bonded” interactions such as the van der Waals or

Lennard-Jones interaction and the Coulomb interaction. Here we just consider the Lennard-Jones

interaction,

VLJ(r) = 4ε[(
σ

r
)12 − (

σ

r
)6] (3)

We take the value of σ ≥ l0 as is physically reasonable and it also prevents crossing of the polymer

chain through the strong repulsion of LJ at distances below σ.

The Rosenbluth method grows polymer chains and during this growth calculates the overall

probability of the chain in the ensemble average. This can then be used to calculate averages of

physical quantities. The growth procedure starts with one atom and adds a second at a distance
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l0 from the first atom and at a randomly chosen angle. Note that in three dimensions the angle

must be chosen with the correct weight. In two dimensions it is chosen randomly on [0, 2π]. The

probability associated with the chosen angle is Pi = wi(θi) = exp[−βE(θi)]/Zi, where Zi is the

local partition function Zi = ∑i wi and is the sum of the weights due to all possible angles for the

ith bead. Typically six or so possible angles are allowed as we don’t want to calculate the energy

at every angle. Once the chain growth is complete, the probability of the chain is ∏i Pi.

Quantities of interest in polymer physics include the end-to-end distance, R, of the chain, or

its radius of gyration Rg. For a random walk model where the chain does not interact with itself

these quantities have a diffusive behavior R ∼ Rg ∼ N1/2. However the hard core repulsion of

the chain with itself makes real polymer chains expand, and the Flory prediction for the real chain

is R ∼ Rg ∼ N3/(d+2), where d is the spatial dimension. For two dimensions R ∼ Rg ∼ N3/4.

A log-log plot of the radius of gyration of your chains as a function of the number beads used N

should see the difference between the Gaussian chain model and the Flory prediction. Note that

the Flory prediction is observed in experiments on single chains in solution, however in dense

melts the Gaussian chain form is observed. Beautiful neutron scattering experiments using dilute

deuterated chains revealed this in the 1970’s.

The pivot algorithm in its naive form is simply a method where a monomer is chosen at random

and then MC moves at that site are chosen randomly for one edge while keeping all other bonds

fixed. The energy of the move is calculated and a Metropolis test is used. To make the procedure

efficient, it is important to quickly decide if a pivot leads to unphysical “collisions” or crossing

configurations (see[1]) below.

[1] J Baschnagel, J. Wittmer and H. Meyer, in Proceedings of Von Neuman conference, vol 23,

83-110 (2004)

[2] P. Grassberger, Pruned-enriched Rosenbluth method: Simulations of polymers of chain length

up to 1 000 000. Phys. Rev. E 56, 3682 - 3693 (1997).

Option 2: Wolff cluster algorithm for spin half Ising model [1]

The Ising model was invented to provide an understanding of phase transitions in ferromag-

nets, where it is known that mangetism is lost for T > Tc where Tc, is the Curie temperature. The

behavior near Tc is complicated and co-operative so that there is actually a singular behavior in
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many physical properties at Tc. In addition the geometry of the magnetic domains at Tc is fractal.

All of these properties can be deduced by using the Monte Carlo method to find the average prop-

erties of Ising magnets. The Hamiltonian of a spin 1/2 Ising magnet in a magnetic field is given

by,

H = −J ∑
<ij>

SiSj − h ∑
i

Si (4)

where J > 0 is a ferromagnetic exchange constant, Si = ±1 is a spin variable, and the sum

is over nearest neighbor sites on a lattice. We take the square lattice as our example (you can

choose another lattice if you want). Our detailed analysis will focus upon the magnetization,

m = (∑i < Si >)/N. Other interesting things to calculate include the internal energy, the suscep-

tibility and the specific heat. The project is to use the cluster (Wolff) Monte Carlo method to find

the average value of these quantities as a function of temperature and by fitting to the expression

magnetization expression m ∼ (Tc − T)β to obtain an estimate of β. You should also compare the

convergence of the cluster algorithm to the standard Metroplis MC method for this problem. An-

other intersting thing to calculate is m versus h for fixed T < Tc to demonstrate the magnetization

jump at h = 0.

The Wolff algorithm [1] was developed after the Swendsen-Wang algorithm and is more con-

venient. The way it works is as follows: (i) Start with a random spin configuration; (ii) Choose

a spin at random in this configuration; (iii) Starting from this “seed” spin, grow a cluster by us-

ing the Wolff cluster growth procedure that works as follows. a) Find a neighoring spin with

the same orientation as the seed (if one exists). b) draw a bond to that spin with probability

p = 1− exp(−βδE). If a bond is drawn, add this spin to the cluster. c) Continue growing the

cluster until no further growth is possible. d) Flip the spin of the cluster. This process leads to a

sequence of spin configurations that are used for averaging in the usual way. In your writeup you

should demonstrate that this procedure satisfies detailed balance.

The Swensden-Wang algorithm is quite similar - Google it and compare with the Wolff algo-

rithm.

[1] Collective Monte Carlo Updating for Spin Systems. Ulli Wolff, Phys. Rev. Lett. 62, 361 (1989)
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Option 3: Variational QMC for the Hydrogen molecule

Quantum problems provide an added complexity for Monte Carlo methods and many ap-

proaches have been developed. Here we use the variational method where we use a wavefunction

form that is inspired by the physics and minimize the energy with respect to the parameters in the

wavefunction. This approach requires good physical insight to find a good variational form for

the wavefunction. This is possible for the Hydrogen molecule (and many other molecules) where

we know the basic structure of the electronic orbitals.

The mathematical form seems simple: we write a variational wavefunction Ψ and we find the

energy

E =
< Ψ|H|Ψ >

< Ψ|Ψ >
, where E ≥ EG (5)

where EG is the ground state energy of the molecule. Of course we get equality if we find the exact

ground state. All other wavefunctions give higher energy - this is the variational principle.

The Hamiltonian of the Hydrogen molecule, in the Born-Openhiemer approximation where

we assume that the nuclear motion is negligible, includes the kinetic and potential energies of the

two electrons as well as their interaction. The positions of the two atomic nuclei are assumed to

be symmetrically located and on the x-axis at positions −s/2, s/2. The nuclei are thus a distance s

apart. The positions of the two electrons are~r1 and~r2. The Hamiltonian is then

H = − h̄2

2m
(∇2

1 +∇2
2)− [

e2

|~r1 +
s
2 î|

+
e2

|~r1 − s
2 î|

+
e2

|~r2 +
s
2 î|

+
e2

|~r2 − s
2 î|

] +
e2

|~r1 −~r2|
(6)

where the first part is the kinetic energy of the two electrons, the second part (square brackets)

is the four attraction terms between the two electrons and the two nulcei and the last term is the

Coulomb repulsion between the two electrons.

The variational wavefunction is given by,

Ψ(~r1,~r2) = φ(~r1)φ(~r2)ψ(~r1,~r2) (7)

where

φ(~r) = e−(~r−
s
2 î)/a + e−(~r+

s
2 î)/a (8)
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where a is a variational parameter. Note that we could take a = a0 the Bohr radius, but allowing

a to vary gives my variational freedom. The key new thing here is the assumption of an form for

the interaction term ψ. A form that is very useful is (see Jos Thijssen’s book, Equation 12.9 of the

first edition),

ψ(~r1,~r2) = exp[
|~r1 −~r2|

α(1 + β|~r1 −~r2|
)] (9)

The first step is to find convenient expressions for the energy E given above using the variational

wavefunction and Hamiltonian above. This is quite laborious but interesting exersize. The result-

ing expressions are six dimensional integrals in the electron co-ordinates~r1 and ~r2. The MC part

of the project is to used a diffusion method to approximate these integrals.

The method should be carried out to find the energy E as a function of the interatomic sepa-

ration s to find the ground state size of the hydrogen molecule. The electron density minus the

electron density of the non-interacting H atoms at the same separation should also be plotted to

illustrate the effect of the e-e Coulomb repulsion on the electronic configuration. Compare with

the reference below [1].

Diffusion MC uses the fact that the Schrodinger equation looks like a diffusion equation so

we can sample the wavefunction using random walks. Of course we have to keep track of the

complex weights which makes it more difficult, but not excessively so.

[1] L. Wolniewicz. Nonadiabatic energies of the ground state of the hydrogen molecule J. Chem.

Phys. 103, 1792 (1995).
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