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LETTER TO THE EDITOR 

Finite size scaling approach to Anderson localisation 

J L Pichard and G Sarma 
Commissariat a 1’Energie Atomique, Division de la Physique, CEN Saclay, BP No 2, 
91190 Gif-sur-Yvette, France 

Received 21 November 1980 

Abstract. Using a new and powerful real space renormalisation method recently introduced 
for phase transitions, we prove numerically that two dimensions are marginal for Anderson 
localisation. An associated transition is found, presenting close analogies with the Koster- 
litz-Thouless transition of the X Y  model in two dimensions, while the behaviour in three 
dimensions is shown to be a standard one with a mobility edge. 

The accuracy of the method is better than previous approaches in two dimensions and 
is not reduced when the number of dimensions is raised to three. 

The purpose of this Letter is to draw attention to an approach to Anderson localisation 
based on the possibility of obtaining the critical properties of higher-dimensional systems 
from one-dimensional models and on the study of Lyapunov characteristic exponents 
(LCE) relative to the asymptotic behaviour of random matrix products. 

The first concept used in this new approach is to extract the nature of the states of 
the infinite lattice by finite size scaling from the variation of characteristic lengths with 
lattice size. This ‘phenomenological renormalisation theory’ has been illustrated by 
application to the king model (Nightingale 1976), to the percolation problem (Derrida 
and Vannimenus 1980), to the O(N)  Heisenberg Hamiltonians (Hamer and Barber 1980) 
and to self-avoiding walks in two dimensions (Derrida 1981). 

Let us explain it in the case of the exactly solvable Ising model on a square lattice 
(Nightingale 1976). It consists of studying the behaviour of the correlation length (,(T) 
along a strip of width n against n for different temperatures 7 (figure 1). 

For T > Tc, 5 ,  converges towards the correlation length of the infinite square lattice 
and sufficiently broad strips simulate the infinite lattice. t ,(T) grows linearly with n at 
the critical temperature Tc and an exponential increase is obtained for T <: T,. At those 
temperatures where (,,(7’) is much larger than n, the infinite lattice cannot be simulated 
by a strip, but a scaling theory can be developed (Fisher and Barber 1972). 

Let us recall the salient features of this theory. When T > Tc, the correlation length 
(,(T) of a strip of width n can be described by the ansatz: 

5,(T) = t,(T)f(n/S,(T)) (n --t CO, T -+ T:) 

wheref(x) is an unknown function of the dimensionless ratio n / t ,  and (, is the correla- 
tion length of the infinite lattice. It is legitimate to assume forftwo limiting behaviours: 
when x goes to infinity,f(x) goes to unity, and when x goes to zero,f(x) behaves as xa. 
When T decreases to Tc, t, diverges as (T  - TC)-’, while (,(T) and n remain finite, so 
that we must take a equal to unity. In other words, the critical temperature appears to be 
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Figure 1 .  Characteristic behaviour of the correlation length of a strip against the width 1 in 
a standard phase transition (e.g. Ising model in 2D). 

E 

Figure 2. Lyapunov exponents y of a strip of width 4 against the energy in the case without 
disorder (W = 0). All the states are plane waves and only the smallest characteristic exponent 
y,,,JE) possesses physical meaning. 

the fixed point of the transformation: 

In all the above mentioned applications of this method, convergence is obtained quickly 
against n and fairly accurate approximations of the fixed point and related exponents 
are found even for small values of n. 

For Anderson localisation, we have to define the characteristic length corresponding 
to the correlation length and the inverse of the smallest Lyapunov characteristic exponent 



Letter to the Editor L129 

is the second concept that we need. On the one hand, Furstemberg’s theorem applied 
to transfer matrix products proves localisation in one-dimensional random models 
(Ishii 1973). On the other hand, the only exactly solvable (but non-random) model that 
we know at the present time and which exhibits a transition from extended to exponen- 
tially localised wave functions (Aubry and Andre 1980) illustrates that the concept of 
LCE is meaningful and efficient in the study of localisation. 

For definiteness, let us consider on an infinite strip of width 1 the Anderson model 
represented in the tight-binding approximation by the stationary Schrodinger equation: 

E*n,m = E n , m * n , m  + * n , m + l  + * n + l , m  + * n - l , m  + * n , m - l  

where E,,,,, is distributed randomly between - W/2 and W/2. The lateral boundary 
conditions are taken to be periodic ($,,, m + l  = I)~, ,J. When IE goes to infinity, we shall 
investigate the asymptotic behaviour of the vector A,(E), whose 21 components are: 

Wn+1,  . . . . . .  * n +  .... k, ...... *n, 1 )  

obtained from a particular vector Ao(E) by the matrix product M ,  = nrZl Ti, where q 
is a real (21 x 21) transfer matrix given by 

0 . . . . . . .  0 -1 

0 
-1 

o . . .  . . . . . . . . . .  0 -1 ( E - q  0 1  J . i. -1 

( E  - E i ,  -1 
-1 (E  - Ei. 2 )  

0 
Ti = (7 -:) and Pi = I 

0 

These transformations and their product are symplectic, i.e. their eigenvalues are pairs 
whose elements are the inverse of each other and it is sufficient to know the first Ith 
eigenvalues. 

Oseledec’s theorem states (Oseledec 1968) that an asymptotic matrix r exists, . -  

defined by r = lim (M:M,)1/2n 
n - m  

where the asterisk denotes a matrix transposition. 

eigenspaces, then the property 
If we call exp y1 . . .  exp y 2 1  the eigenvalues of r and u1 . . .  u21 the corresponding 

holds for any vector U E uv.  These y, are the LCE of the random matrix product Mn.  This 
implies, with full mathematical rigor, for any system as a strip or a bar, that any arbitrary 
vector Ao(E) is a linear combination of a set of vectors whose asymptotic divergence is 
given by the different LCE y r .  This process is called a filtration in dynamical systems 
(Benettin and Galgani 1979). 

Oseledec’s theorem gives the rigorous answer to the recently widely discussed prob- 
lem (Anderson et a1 1980) of finding the correct ‘scaling’ variables (or those which possess 
the property of ‘additive mean’). This same theorem also shows why it is meaningless 
to average M: M n  (Abrahams and Stephen 1980, Andereck and Abrahams 1980, Stephen 
1980). Indeed such an average, which can be done easily, violates the fundamental 
property that those matrix products are symplectic. 
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However, we insist upon the fact that in our calculations no use is made of any 
questionable averaging procedure, since they rely on the existence of Oseledec’s asymp- 
totic matrix r. 

In this Letter we focus our interest on Lmax, defined as the inverse of the smallest 
LCE, which represents the largest possible localisation length for any vector &(E), and 
consequently for an eigenvector, if it exists at that given energy. 

By analogy with the above mentioned applications of the finite size scaling theory, 
we can expect three kinds of behaviours when we study LmaX against the width 1 of a 
strip for localisation on a square lattice, or against the side s of a bar for localisation in a 
cubic lattice. 

If LmaX against increasing 1 or s converges towards a finite limit, it proves that any 
eigenstate, if it exists at that given energy, converges exponentially to zero at infinity 
with a localisation length at most equal to that finite limit (behaviour 1). 

If L,,, against increasing 1 or s diverges, we have to distinguish between two kinds 
of possible divergences: 

(i) A linear one, which means scale invariance as in the Ising model at the critical 
temperature. Consequently, the possible eigenstate corresponding to Lmax is not expon- 
entially localised (because the extrapolated localisation length is infinite), nor is it 
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Figure 3. LmaX against the side s of a bar for an energy equal to zero and periodic lateral 
boundary conditions. 
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Figure 4. (U )  LmaX against the width 1 of the strip lor a n  energy equal to zero; (b) behaviour 1 
in two dimensions for E = 0. 

extended. The linear growth of LmaX corresponds to a singular state which decays to 
zero at infinity with a power law, in the same way as the correlation function of the Ising 
model at T, (behaviour 11). 

(ii) A faster than linear divergence of Lmax proves that there exist at that given energy 
at least two extended states. Indeed, in that case, the smallest LCE being zero, it is possible 
to build up two different extented states which correspond to the two possible ways of 
transfer along the one-dimensional system. Those states do not decay to zero at infinity 
(behaviour 111). 

The LCE have been calculated with the help of a method described in the case of a n  
ergodic problem of Hamiltonian and dissipative dynamical systems (Benettin and 
Galgani 1979, Shimada and Nagashima 1979)t, and a quite satisfactory convergence 
after a product of lo4 matrices was found for distinguishing between the three announced 
kinds of behaviour. 

In order to compare our results with those of Lee (1979) in two dimensions, we have 
fixed the energy E equal to zero and taken Was a variable. 

t We emphasise that our numerical process is based on a rigorous mathematical method which deduces the 
firsts LCE from the asymptotic divergence of a volume defined by s orthogonal vectors. 
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By the study of random transfer matrix products on bars (figure 3), we find that in 
the case of three dimensions, there is only one critical value, Wc - 19 & 1, for which the 
linear growth is observed, separating a region of exponentially localised states (W > Wc, 
behaviour I) from a region of extended states (W < Wc, behaviour 111). 

On the other hand, our studies on strips (figure 4) give a very different result for two 
dimensions. We have found a critical value of W (W, - 6 2 0.2) in close agreement with 
the value given by Lee (1979) separating two regions. 

For W > W,, behaviour I is found. For all W < Wc, behaviour I1 is found. This result, 
which is very similar to the one found by Hamer and Barber in the O(2) Heisenberg 
Hamiltonian in (1 + 1) dimensions, must be understood as a spectacular demonstration 
of the existence of a whole region of scale invariance in two dimensions, and is by no 
means in contradiction with the scaling theory result (Abrahams et a1 1979). 

Actually, the natural conclusion for two dimensions is that the states are exponentially 
localised for W > W,, and that for all W < W, the states are ‘singular’, decaying to zero 
with a power law. This situation is reminiscent of the ‘quasi-order’ transition of the 
2D XY model (Kosterlitz and Thouless 1973). 

Our results in two dimensions thus confirm the recent ideas postulated by Abrahams, 
Anderson, Licciardello and Ramakrishnan on the nature of the eigenfunctions, and 
also give a solution to the controversy between Lee (1979) and Abrahams et a1 (1979). 

We thank S Aubry, B Derrida and P Manneville for helpful and stimulating discussions. 
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