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Tight-binding description of graphene
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We investigate the tight-binding approximation for the dispersion of thep and p* electronic bands in
graphene and carbon nanotubes. The nearest-neighbor tight-binding approximation with a fixedg0 applies only
to a very limited range of wave vectors. We derive an analytic expression for the tight-binding dispersion
including up to third-nearest neighbors. Interaction with more distant neighbors qualitatively improves the
tight-binding picture, as we show for graphene and three selected carbon nanotubes.
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The band structure of carbon nanotubes is widely m
eled by a zone-folding approximation of the graphenep and
p! electronic states as obtained from a tight-bindi
Hamiltonian.1–5 The large benefit of this method is the ve
simple formula for the nanotube electronic bands. While
tight-binding picture provides qualitative insight into th
one-dimensional nanotube band structure, it is more
more being used for quantitative comparisons as well.
instance, attempts to assign diameters and chiralities of
bon nanotubes based on optical absorption and Raman
rely heavily on the assumed transition energies.2,6 Differ-
ences between the zone-folding, tight-bindingp-orbital de-
scription and experiment, as observed, e.g., in scanning
neling measurements, are usually ascribed to ‘‘curvat
effects.’’1 However, the commonp-orbital tight-binding ap-
proach for the nanotube band structure involves two appr
mations:~i! zone folding, which neglects the curvature of t
wall; and ~ii ! the tight-binding approximation to th
graphene bands including only first-neighbor interacti
Whereas the first point received some attention in
literature,7–9 the second approximation is usually assumed
be sufficient.

In this paper we compare the tight-binding approximat
of the graphenep orbitals to first-principles calculations. W
show that the nearest-neighbor tight-binding Hamilton
does not accurately reproduce thep andp* graphene bands
over a sufficiently large range of the Brillouin zone. We d
rive an improved tight-binding electronic dispersion by i
cluding up to third-nearest-neighbor interaction and overl
The formula for the electronic states we present may rea
be used, e.g., in combination with zone folding to obtain
band structure of nanotubes.

The first tight-binding description of graphene was giv
by Wallace in 1947.10 He considered nearest- and nex
nearest-neighbor interaction for the graphenepz orbitals, but
neglected the overlap between wave functions centere
different atoms. The other—nowadays better known—tig
binding approximation was nicely described by Saitoet al.4

It considers the nonfinite overlap between the basis fu
tions, but includes only interactions between nearest ne
bors within the graphene sheet. To study the different lev
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of approximation we start from the most general form of t
secular equation, the tight-binding HamiltonianH, and the
overlap matrixS,4

UHAA~k!2E~k!SAA~k! HAB~k!2E~k!SAB~k!

HAB* ~k!2E~k!SAB* ~k! HAA~k!2E~k!SAA~k!
U50, ~1!

where E(k) are the electronic eigenvalues. We used
equivalence of theA and B carbon atoms in the graphen
sheet. The solution to Eq.~1! is

E~k!65
2~22E01E1!6A~22E01E1!224E2E3

2E3
,

~2!

with

E05HAASAA , E15SABHAB* 1HABSAB*

E25HAA
2 2HABHAB* E35SAA

2 2SABSAB* . ~3!

To outline the procedure of setting up the Hamiltoni
and overlap matrix let us briefly derive the nearest-neigh
tight-binding dispersion~for a more complete description se
Ref. 4!. For an atomA0 as shown in Fig. 1 the nearest neig

FIG. 1. Graphene hexagonal lattice.a1 anda2 are the unit-cell
vectors of graphene with a lattice constanta52.461 Å. The unit
cell contains two carbon atomsA andB belonging to the two sub-
lattices. An atomA0 has three nearest neighborsB1i , six next-
nearest neighborsA2i , and three second-nearest neighborsB3i .
©2002 The American Physical Society12-1



r

r
n
b

um

rix

a
de

st
n
e

of
rgy
ane
ene

gh-

ced

0

c-
mic
b-

n-

f
We
ing
ave
d
ent

the
ent

iate

-
t-

of

ns

ed

S. REICH, J. MAULTZSCH, C. THOMSEN, AND P. ORDEJON PHYSICAL REVIEW B66, 035412 ~2002!
bors areB11, B12, andB13, all of which belong to the othe
graphene sublattice; thus for nearest-neighbor interaction

HAA5
1

N (
RA

(
RA8

eik(RA82RA)^wA~r2RA!uHuwA~r2RA8!&

5
1

N (
RA

^wA~r2RA!uHuwA~r2RA!&5«2p , ~4!

whereN is the number of unit cells in the crystal,RA andRA8
are the positions of atomA and A8, respectively, andwA
denote thepz atomic wave functions forming the basis fo
the crystal Bloch functions. The overlap matrix eleme
SAA51, since we assume the atomic wave functions to
normalized @^wA(r2RA)uwA(r2RA)&51#. To find HAB
within the nearest-neighbor approximation, we simply s
over the three nearest neighbors shown in Fig. 1:

HAB5
1

N (
RA

(
RB

eik(RB2RA)^wA~r2RA!uHuwB~r2RB!&

5g0~eikR111eikR121eikR13!

with

g05^wA~r2RA!uHuwB~r2RA2R1i !& ~ i 51,2,3!,

the same treatment yields the overlap matrix element

SAB5s0~eikR111eikR121eikR13!

with

s05^wA~r2RA!uwB~r2RA2R1i !& ~ i 51,2,3!,

whereR1i is the vector pointing from atomA0 to atomsB1i
in Fig. 1. Now we insert the Hamiltonian and overlap mat
elements into Eqs.~3! and ~2!. We define the function

f ~k!531u~k!

5312 cosk•a112 cosk•a212 cosk•~a12a2!

5312 cos 2pak112 cos 2pak212 cos 2pa~k12k2!,

~5!

whereki5k•ai /2p are the components of a wave vectork in
units of the reciprocal graphene lattice vectorsk1 andk2, and
obtain the well-known result4

E6~k!5
«2p7g0Af ~k!

17s0Af ~k!
. ~6!

The three parameters«2p , g0, and s0 are found by fitting
experimental or first-principles data. The most common pr
tice is to adjust the tight-binding dispersion to a correct
scription of thep bands at theK point. This yields«2p
50 eV, g0 between22.5 and23 eV, ands0 below 0.1.
Since s0 is small, it is usually neglected. The neare
neighbor Hamiltonian is able to produce bands which are
symmetric with respect to the Fermi level, but only if th
overlaps0 is nonzero.
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The nearest-neighbor tight-binding description
graphene was originally developed to study the low-ene
properties of graphite, i.e., the focus was not on the in-pl
dispersion, but rather on the coupling between the graph
sheets. As the interest rose in nanotubes, Eq.~6! ~with s0
50) was adopted for the electronic band structure throu
out the entire Brillouin zone. In Fig. 2~a! we show anab
initio calculation of the graphenep andp* bands~full lines!
and the tight-binding dispersion@Eq. ~6!#, neglecting the
overlap matrix~dashed lines! and in Fig. 2~b! the difference
between the two calculations. An interaction parameterg0
522.7 eV was used, a typical value which best reprodu
the slopes of the valence and conduction bands at theK point
from the first-principles calculations. Ourab initio calcula-
tions were performed with theSIESTA code11,12 using
pseudopotentials13 and the Perdew-Zunger parametrization14

of the local-density approximation. An energy cutoff of 27
Ry was taken for real space integrations and a 4034031
Monkhorst-Pack grid15 in reciprocal space. The valence ele
trons were expanded in a basis of numerical pseudoato
orbitals.16,17 The converged band structure in Fig. 2 was o
tained with a double-z, singly polarized basis set. The exte
sion of thes orbitals was 5.12 a.u.52.71 Å and of thep and
d orbitals 6.25 a.u.53.31 Å.16 A further increase of the cutof
radii affected the electronic energies by less than 5 meV.
obtained a graphene lattice constant 2.468 Å; the bind
energy and elastic constants agreed well with plane w
calculations and experiment.18 For comparison we calculate
the band structure of graphite and found good agreem
with plane-wave pseudopotential calculations.19,20

In general the agreement between first-principles and
tight-binding band structure is rather poor; good agreem
is only obtained very close to theK point of Brillouin zone,
i.e., for the wave vectors used to determineg0. Even in the
range of the visible transitions the electronic energies dev
by some 100 meV.

The benefit of theSIESTA method for the present discus
sion is that the self-consistent Hamiltonian is of a tigh
binding type.11,12 We can thus directly compare the level

FIG. 2. Ab initio and nearest-neighbor tight-binding dispersio
of graphene.~a! The convergedab initio calculation of the graphene
p andp* electronic bands is shown by the full lines. The dash
lines represent the tight-binding dispersion of Eq.~6! with s050
and g0522.7 eV. ~b! Difference DE between theab initio and
tight-binding band structures.
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TIGHT-BINDING DESCRIPTION OF GRAPHENE PHYSICAL REVIEW B66, 035412 ~2002!
FIG. 3. ~a! Top: first-principles band structure with a single-z basis set andr c51.18 Å. The nearest-neighbor tight-binding ban
structure@Eq. ~6!# with g0521.86 eV ands050.02 coincides with the first-principles result. Bottom: differenceDE between the first-
principles and nearest-neighbor tight-binding band structures.~b! Top, full lines: first-principles result with a single-z basis set andr c

51.86 Å; dotted lines: nearest-neighbor tight-binding band structure@Eq. ~6!# with g0522.84 eV ands050.070; the third-nearest neigh
bor tight-binding band structure coincides with the first-principles result shown by the full lines («2p520.36 eV, g0522.78 eV, g1

520.12 eV,g2520.068 eV,s050.106,s150.001, ands250.003). Bottom, dotted line: difference between the first-principles and
nearest-neighbor tight-binding band structure shown in the top panel. For the third-nearest neighbor tight-binding approximation t
ences are not seen on the chosen energy scale.~c! Top: convergedab initio ~full lines! and third-neighbor tight-binding~dashed! band
structures; see Table I for the tight-binding parameters (MGKM ). Bottom: difference between the two band structures above.
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approximation~basis set completeness and extension! in an
ab initio calculation to the empirical tight-binding Hami
tonian. For the first-principles band structure in Fig. 2~a! we
used a basis set that~i! contained two independent radi
functions to describe thep orbitals, and included a shell o
polarizingd orbitals ~double-z plus polarization basis set16!,
and~ii ! had a radial cutoff of 3.31 Å, i.e., atoms as distant
6.62 Å have a nonfinite overlap and interaction~correspond-
ing to the ninth distant neighbor!. To mimic the empirical
approximation by the first-principles calculation we calc
lated the band structure for a simple basis~single-z) with a
cutoff radius of 1.18 Å, which includes only the interactio
with the nearest neighbors~see Fig. 1!. The result is shown
in Fig. 3~a!. The differences between the single-z nearest-
neighbor band structure and the converged result in Fig.~a!
are obvious: The separation of the valence and conduc
band is reduced, most strongly at theG point; also the asym-
metry of the bonding and antibonding band is much sma
As expected, the dispersion in Fig. 3~a! is perfectly repro-
duced by the nearest-neighbor tight-binding formula in E
~6!, since theab initio calculation with that basis set take
precisely that form. The tight-binding parameters we obt
are g0521.86 eV ands050.02. The differences betwee
theab initio calculation and Eq.~6! with these parameters i
smaller than 1023 eV, as shown in the bottom of Fig. 3~a!,
and is due to numerical inaccuracies in theab initio calcula-
tion.

We now increased the extension of the basis wave fu
tion to r c51.86 Å, while still using a simple basis set an
obtained the band structure in Fig. 3~b! ~full lines, top panel!.
At the G point the agreement between this calculation a
the converged result is already quite satisfactory~2 %!; theM
point energy of the conduction band is, however, overe
mated by 55 %. The best fit of the tight-binding express
@Eq. ~6!# to the first-principles band structure is shown by t
dotted lines in Fig. 3~b!. The dotted line in the bottom pane
represents the difference between theab initio and empirical
results, which is on the order of 100 meV for most points
03541
s

-

n

r.

.

n

c-

d

i-
n

f

the Brillouin zone. The interaction with the more dista
neighbors can thus no longer be neglected.

Wallace in his tight-binding study already consider
second-nearest-neighbor interaction, although at the cos
neglecting the overlap matrix.10 An extension of the tight-
binding interaction radius, however, has to include the s
ond as well as the third-nearest neighbors, since the dista
uR2i u52.461 Å is very close touR3i u52.842 Å. To find the
third-nearest-neighbor tight-binding dispersion we proce
exactly as outlined above. The sum overRA8 in HAA and
SAA (HAB and SAB) now additionally includeRA85RA
1R2i (RBi5RA1R3i). TheEi ’s in Eq. ~3! are then given by

E05@«2p1g1u~k!#@11s1u~k!#, ~7!

E152s0g0f ~k!1~s0g21s2g0!g~k!12s2g2f ~2k!, ~8!

E25@«2p1g1u~k!#22g0
2f ~k!2g0g2g~k!2g2

2f ~2k!,
~9!

E35@11s1u~k!#22s0
2f ~k!2s0s2g~k!2s2

2f ~2k!, ~10!

g~k!52u~k!1u~2k12k2 ,k122k2!. ~11!

f (k) and u(k) were defined in Eq.~5!. g1 and g2 are the
interaction energies with the second and third neighbors,
s1 ands2 are the corresponding overlaps. InsertingE0 to E3
into Eq. ~2! yields the tight-binding electronic dispersion
the third-nearest-neighbor approximation. We thus includ
the same number of neighbors for the first-principles a
tight-binding Hamiltonians. With the tight-binding param
eters as given in the caption of Fig. 3 the agreement betw
the electronic energies is again very good, better th
1022 eV. This difference is now partially due to numeric
inaccuracies of theab initio calculation, and to difficulties of
the fitting procedure when the number of parameters is la

The third-nearest-neighbor tight-binding approximation
not yet sufficient to correctly describe the convergedab ini-
tio calculations, since they needed a larger basis set a
2-3
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higher cutoff radius. Nevertheless, we can quite accura
reproduce the first-principles results by considering o
third-nearest neighbors. Figure 3~c! again shows the con
vergedab initio p band structure~top panel, full lines! to-
gether with the third-neighbor tight-binding approximatio
~dashed lines!. The g i ’s and si ’s used for the tight-binding
dispersion are listed in Table I (MGKM ); at this point they
should be considered fitting parameters rather than as ha
strict physical meanings. The difference between theab ini-
tio and the empirical band structure is better than 250 m
along the high-symmetry lines, also see Fig. 3~c!, bottom
panel. For the optical range~transition energies,4 eV) we
found an even better agreement~4 meV!, with a slightly
different set of parameters as given in Table I.

The third-neighbor approximation does not only yield
better fitting result along a given high-symmetry line than
nearest-neighbor approximation. Instead a set of tig
binding parameters found, e.g., from the optical ene
range, gives reliable energies at low-symmetryk as well. To
demonstrate this we show how the zone-folding band st
ture of carbon nanotubes improves by including more dis
neighbors in the tight-binding Hamiltonian.

To obtain the band structure of a nanotube within zo
folding we restrict thek vectors to the allowed wave vecto
of the tube. TheG point of an (n1 ,n2) nanotube is in terms
of the graphene reciprocal lattice vectors given by21

kG~m!5mS 2n11n2

qnR k11
2n21n1

qnR k2D , ~12!

FIG. 4. Band structure of a~10,10! armchair nanotube.~a! Ab
initio calculation. ~b! Nearest-neighbor tight-binding calculatio
with g0522.7 eV.~c! Third-nearest-neighbor tight-binding calcu
lation with parameters obtained from a fit to the optical ene
range; see Table I. The dashed lines denoteab initio calculated
energies of the singularities in the density of states.
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where n is the highest common divisor ofn1 and n2 , R
53 if (n12n2)/3n is an integer andR51 otherwise,q
52(n1

21n1n21n2
2)/nR, and m is an integer running from

2q/2 to q/221. The one-dimensional nanotube Brillou
zone is given by the wave vectors running fromkG(m) to
kG(m)1kz (2q/2<m<q/221), with

kz52
n2

q
k11

n1

q
k2 . ~13!

As a first example we consider a~10,10! armchair tube. In
this tube curvature, effects are negligible since the diam
d51.44 nm and the chiral angleQ530° are large.7,8 Figure
4~a! shows theab initio band structure of the~10,10! nano-
tube. The nearest-neighbor tight-binding dispersion in F
4~b! correctly predicts the first optical transition energ
whereas the higher transition energies are strongly over
mated. The states at the center and the boundary of the
louin zone are incorrectly described by this simple appro
mation. In contrast, the agreement between theab initio and
the third-nearest-neighbor tight binding is excellent. T
shape of the electronic dispersion as well as the abso
energies are very well described by the improved tig
binding approximation. In particular, the second singular
in the optical absorption probability is at an energy
2.73 eV ~453 nm! both from theab initio and third-order
tight-binding band structures, whereas the nearest-neigh
approximation perdicted a transition energy in the far U
~3.4 eV!.

y

FIG. 5. Band structure of a~19,0! zigzag nanotube.~a! Ab initio
calculation.~b! Nearest-neighbor tight-binding calculation withg0

522.7 eV. ~c! Third-nearest-neighbor tight-binding calculatio
with parameters obtained from a fit to the optical energy range;
Table I. The dashed lines denoteab initio calculated energies of the
singularities in the density of states.
TABLE I. Tight-binding parameters.MGKM : fit to the ab initio energies for allk along the high-
symmetry lines. optical: only thek yielding optical transitions with an energy,4 eV were included in the
fit. DEmax (DEmax opt.! is the maximal deviation of the tight-binding from theab-initio results for allk
~only the optical range!.

«2p ~eV! g0 ~eV! s0 g1 ~eV! s1 g2 ~eV! s2 DEmax ~eV! DEmax opt. ~eV!

MGKM 20.28 22.97 0.073 20.073 0.018 20.33 0.026 0.25 0.25
optical 22.03 22.79 0.30 20.68 0.046 20.30 0.039 1.37 0.004
2-4



e

te
e

e

a
n
-

a-
the
est-
va-

e
ts is
ds.

ht-
ig.
de-

xi-
t-

en-
e
the
st-
e-

on-
a

ruc-

o.
ut-
-1.

n
s

e

TIGHT-BINDING DESCRIPTION OF GRAPHENE PHYSICAL REVIEW B66, 035412 ~2002!
In Figs. 5~a!–5~c! calculations similar to those for th
~10,10! tube are shown for the~19,0! zigzag tube with a
diameterd51.50 nm. Again, the agreement between theab
initio and third-neighbor tight-binding results is much bet
than for the nearest-neighbor approximation. As we show
in Ref. 8, the remaining discrepancies between Figs. 5~a! and
5~c! are due to thes-p hybridization of the curved nanotub
wall. Curvature effects are, in general, most pronounced
zigzag nanotubes. Finally, we consider the chiral~12,3!
nanotube (d51.30 nm,Q510.9°). This is an example of
metallic tube withR53, i.e., the valence and conductio
bands cross at'2p/3a in the nanotube Brillouin zone. Fig
ure 6~a! shows theab initio calculations, Fig. 6~b! the next-

FIG. 6. Band structure of a~12,3! chiral nanotube.~a! Ab initio
calculation.~b! Nearest-neighbor tight-binding calculation withg0

522.7 eV. ~c! Third-nearest-neighbor tight-binding calculatio
with parameters obtained from a fit to the optical energy range;
Table I. The dashed lines denoteab initio calculated energies of th
singularities in the density of states.
s

T.
Re

M
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nearest-neighbor tight-binding band structure, and Fig. 6~c!
the third-nearest neighbor tight-binding result. While the v
lence bands are quite similar in the three approximations,
conduction bands are only poorly described by the near
neighbor approximation. The better agreement for the
lence band structure can be traced back to Fig. 2~b!, where
the difference between theab initio calculated band structur
for graphene and the nearest-neighbor tight-binding resul
smaller for the valence band than for the conduction ban
As for the ~19,0! tube, the valence bands of the~12,3! tube
are shifted to lower energies in theab initio calculation by
curvature effects. Nevertheless, the third-neighbor tig
binding band structure combined with zone folding in F
6~c!, which takes only some seconds, already very well
scribes the first-principles results.

In conclusion, we investigated the tight-binding appro
mation for thep and p* bands of graphene. The neares
neighbor tight-binding dispersion predicts the electronic
ergies correctly only for a very limited range of wav
vectors. If up to third-nearest neighbors are included,
tight-binding approximation quite accurately describes fir
principles results over the entire Brillouin zone. The agre
ment is not restricted to high-symmetry lines, as we dem
strated by combining the tight-binding approximation with
zone-folding approach to calculate the electronic band st
ture of two achiral and a chiral nanotube.
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