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J. Phys.: Condens. Matter 1 (1989) 9963-9968. Printed in the UK 

LETTER TO THE EDITOR 

A study of the two-dimensional bond quantum 
percolation model 

J P G Taylor and A MacKinnon 
The Blackett Laboratory, Imperial College, London SW7 2BZ, UK 

Received 20 September 1989 

Abstract. The nature of the electronic states of the two-dimensional bond quantum per- 
colation model is investigated using the finite size scaling method. The results indicate 
that at all concentrations above the percolation concentration the states are exponentially 
localised. There is no delocalisation transition. The scaling behaviour of the model is found 
to be the same as for the normal Anderson model in two dimensions. 

Recently there has been a report (Meir et a1 1989) claiming clear evidence of a 
delocalisation transition in the 2~ quantum percolation model (QPM) (Kirkpatrick and 
Eggarter 1972). The implications of such a transition for a single-parameter scaling 
theory of localisation (Abrahams-1979) and the associated universality ideas motivated 
this work on the model using an alternative technique. 

We treat the model, defined below, numerically using the finite size scaling method 
(MacKinnon and Kramer 1983), which has proven very powerful in earlier studies 
of the Anderson model. We find no evidence of a delocalisation transition at any 
concentration. Our results show a single-parameter scaling which is similar to that of the 
normal Anderson (NA) model. 

We will now consider our model. The QPM is a nearest neighbour (NN) tight-binding 
Hamiltonian (TBH) defined on a square lattice. 

{ 1 i)} are a basis of wavefunctions centred on each site, i. The site energies are constant 
and taken to be zero. The hopping integrals Vq are taken to be either 1, with probability 
p ,  or 0, with probability 1 - p ,  depending on whether the bond is present or absent; i.e. 
they are distributed randomly with probability distribution 

P(V,) = pS(Vq - 1) + (1 - p)6(Vq).  (2) 
The analogy between the value of the hopping element and the presence or absence of 
a bond leads to the name quantum percolation. The model can equally well be thought 
of as a NN TBH model with an underlying lattice structure given by percolation clusters 
rather than say, a square lattice. The disorder in the problem is that due to the irregularity 
of the percolation cluster and so a higher concentration of bonds means a lower disorder. 

Our work involved the use of the finite size scaling method, whereby a quasi-iD 
system is generated by coupling isolated slices of width M to a stem to build up a strip of 
arbitrary length N .  
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Figure 1. Double-logarithmic plot of the renormalised exponential decay length A = 1/M 
of the transmission coefficient of strips of width M as a function of M for concentrations from 
p = 0.79 at the top t o p  = 0.58 at the bottom in steps of 0.01. 

The submatrix, of the systems Green's function, relating the 1st slice and the N + l th  

If H(N is the Hamiltonian of a strip of length N ,  then the Hamiltonian of the new 
slice, G1,N+ can be calculated iteratively. 

system resulting from the addition of a slice can be written as 

H('"+l) = H(N + VN,N+l + H k t l  (3) 
where VN,N+ is the matrix of hopping elements coupling the ( N  + 1)th slice to the system 
through the Nth, and HON+l is the Hamiltonian of the ( N  + 1)th slice in isolation. 

The Green's function for the system of size N +  1, G N + l ,  can then be determined 
from the Green's function for the system of size N ,  G(N, and the Green's function for 
the isolated slice, Go, by treating VN,N+l as a perturbation and using Dyson's equation: 

G(N+1)  = (G(N + Go) + (G(N + GO)VG(N+1)  (4) 
It can then be seen that the only non-zero terms required to determine the submatrix 
relating the 1st slice and the ( N  + 1)th slice are given by the equations 

( 5 )  

( 6 )  

G{t\ = 1 (7) 

G(N+1)  - G ( N V  G(N+1)  

G ( N +  1)  

1,N+1 - l , N  N.N+l  N+l .N+I  

N + l , N + I  = (EF1 - H k + l . N + l  - VN+l,NGk?NvN.N+l)-l 
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Figure 2. Double-logarithmic plot of the renormalised exponential decay length of the 
transmissioncoefficient Aofstripsofwidth Masafunctionof [/M. [isthescalingparameter, 
which is chosen to fit all data onto one and the same curve. Normal Anderson model: 0; 
QPM: 0. 
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Figure 3. Plot of the renormalised exponential decay length of the transmission coefficient 
A of strips of width M as a function of the logarithm of C/M. [ is the scaling parameter. 
Normal Anderson model: 0; QPM: 0. 
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G6:A = 0 (8) 
where EF is the Fermi energy. Periodic boundary conditions are imposed across the strip 
to remove surface effects. 

This procedure must be used instead of the usual transfer matrix approach (MacK- 
innon and Kramer 1983), as the latter requires the inversion of the matrix VN,N+ which 
is singular in the QPM case. 

The resolvent G(;rJ)N can be used to define the localisation length of the system through 

For the QPM, care must be taken with this method since after some finite number of slices 
have been added there will no longer be a pathway of bonds connecting the 1st slice with 
the new Nth one, implying that G($) = 0 for all N' 2 N. 

This meant that it was not possible to take N to be arbitrarily large as is the case in 
the NA problem and so the self-averaging of AM that this limit invokes was no longer 
accessible. Instead, provided that N > AM, the average can be done explicitly by con- 
sidering many smaller systems. This was done using a chi squared fit of 

- lnTrJG{%12 = (2/AM)N+ B (10) 
with a total of 300000 slices making up the systems. The equivalence of these two 
approaches has been tested numerically for the NA. 

Finite size scaling was then used to extrapolate the full 2D behaviour from the trend 
as the strip width is increased. The validity of the scaling ansatz 

A M  = f( g(p)lM) (11) 
was tested by mapping the data for different concentrations onto a single curve by fitting 

The method outlined above was applied over the concentration rangep = 0.55-0.81 
with systems of width 4 sites to 32 sites. The Fermi energy was taken as the constant 
E, = 0.3 in units of the hopping integral, i.e. close to the band centre. The site energies 
were taken to have a small disorder, width W = 0.01, to remove any accidental degener- 
acies. 

We found that the width M = 4 data showed anomalous behaviour at both the low 
and high concentrations. At concentrations above p = 0.78, the M = 4 systems were 
found to be sensitive to a change from periodic to anti-periodic lateral boundary con- 
ditions. This can be attributed to the phase coherence length being of the same order as 
the system width (MacKinnon and Kramer 1983). The data for the higher concentrations 
were thus not considered in the scaling analysis. The behaviour at concentrations below 
p = 0.60 will be discussed later. The remainder of the data behaved as follows. 

The plots of h(AM/M) versus In M over the above range of concentrations, figure 1 
never have a positive gradient-indicating that the states remain localised. 

Using the fitting procedure described by MacKinnon and Kramer (1983) a single- 
parameter scaling is obtained, figure 2. 

The scaling curve for the QPM has the same form as that of the NA model. In the weak 
disorder region A = AM/M is increasing logarithmically with the localisation length in 
both cases: 

C(P). 

A = A ln(c(p)/M) + C. (12) 
However, the resulting straight lines for these two models, figure 3, do have somewhat 
different gradients. 
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Figure 4. Plot of the average concentration of bonds in the cluster connecting the 1st slice to 
the Nth slice as a function of the generating concentration, p ,  for systems of width M = 4, 
8, 16. 

The anomalous behaviour of the M = 4 data can be understood as a cross-over effect 
caused by the change with concentration of the length scale on which the underlying 
percolation structure appears to be fractal. 

Gefen et aZ(1983) proposed a theory of the QPM that accommodates the effect of the 
fractal character of the clusters on length scales less than the percolation correlation 
length 5,. They introduced aparameterx = L/(& + L) .  Forx < 0.5 the fractal character 
dominates the behaviour of the conductance. This crosses over to a single-parameter 
scaling equivalent to the NA in the limit x + 1. 

The average concentration of bonds in the cluster connecting the 1st slice to the Nth 
slice was determined as a function of the generating concentration for systems of width 
M = 4,8,16, figure 4. A width dependence is evident at concentrations belowp = 0.60, 
the concentration of the connecting cluster being significantly higher in the width M = 
4 systems. This effect can be attributed to the pair connectedness length, gp  being 
comparable with the system width; i.e. x = 0.5 and a single-parameter scaling should 
not be expected. However, for larger widths or higher concentrations the system will 
appear homogeneous and the single-parameter scaling should be applicable, as is found. 
The increased processing power required for the treatment of 3D systems means that in 
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the critical region it is not possible to take this homogeneous systems limit and the cross- 
over effects themselves must be treated in order to determine the transition point. 
Results for the 3D site quantum percolation model will be published elsewhere. 

In conclusion, our results show no evidence of a delocalisation transition in the ZD 
bond quantum percolation model. They do show that a single-parameter scaling is valid 
over a large range of concentrations. The small system widths, however, appear to be 
strongly affected by the structural correlations of the supporting percolation clusters 
and require a more complex scaling analysis to be incorporated correctly. The scaling 
curve obtained differs only slightly from that obtained for the normal Anderson model 
by this technique and retains the same weak disorder trend. 

One of us, JPGT, would like to thank the Science and Engineering Research Council 
for financial support. 
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