
Tight Binding project

The project

This project can be carried out using any programming language and is perhaps easiest using

Mathematica or Matlab. It has two parts.

1. Plot the band dispersion relations for electrons on square and hexagonal lattices (graphene).

The objective is to show that for the square lattice the dispersion relations near the band extrema

are parabolic. This is the usual behavior for almost all materials, e.g. Si, Ge etc. In constrast for

Graphene the behavior near the extrema are linear, like in relativistic systems, which motivates a

great deal of interest in studying the electronic properties of graphene. (details are given below)

2. Set up the nearest neighbor tight binding matrices for the square lattice with uniform random

site energies (Anderson model). Diagonalize this matrix using canned routines (e.g. Eigenvalues

in Mathematica). Plot the density of states and the participation ratio (see Eq. (11)) as a function

of the disorder.

Background on tight binding for part 1

You can follow the paper S. Reich, J. Maultzsch, C. Thomsen, P. Ordejon, Phys. Rev. B66, 035412

(2002) for the graphene calculation. For the square lattice see equation (5) below.

The tight binding approach to electronic band structure is one of the standards of condensed

matter physics and is frequently extended to the study of many body problems. The starting

point is to assume a basis set of localized orbitals on each site of an atomic structure. The atomic

structure does not have to be crystalline though often crystallinity is the correct assumption. The

simplest model consists of assuming that only one localized orbital is important at each site, a so-

called single band model. Some crystal structures, such as the honeycombe and fcc lattices. have

more than one site per unit cell and require a slightly more complex treatment. In cases where

there is periodicity, only one orbital per site and one orbital per unit cell, φ, Bloch’s theorem states

that the wavefunction for an electron is,

ψ~k(~r) = AN ∑
n

ei~k·~Rn φ(~r− ~Rn) = ∑
n

cnφn(~r) (1)

If there are more orbitals per site and/or more than one atom per unit cell this expression is ex-

tended in a reasonably straightforward way. Here AN is the normalization constant that is usually
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1/N1/2. It falls out of the band energy calculations and is the band wavefunctions are normalized

at the end, so sometimes it is omitted.

The tight binding method can also be used in cases where there is no lattice periodicity so that

Bloch’s theorem fails. In this more general case the band structure problem requires solution of

large sparse matrices. The general case considers a set of localized orbitals φn and the assumption

that the wavefunction of the system is a linear combination of atomic orbitals (LCAO),

ψ(~r) = ∑
n

cnφn(~r) (2)

The orbitals φn are call the basis set while cn are the coefficients of the wavefunction that we would

like to find. Notice that Bloch’s theorem is a special case of LCAO where the wavenumber~k is a

good quantum number. Now we consider Hψ = Eψ which gives,

∑
n

cn(H − E)φn = 0, so that ∑
n

cn(< m|H|n > −E < m|n >) = 0 = ∑
n
(Hmn − ESmn)cn (3)

where the Dirac notation < m|O|n >=
∫

ddrψ∗(~r)Oψ(~r). The diagonal terms < n|H|n >= εn

are the energies of the basis states, while the diagonal term < n|n >= 1 provided we use an

orthonormal basis. In many cases, it is assumed that the overlap intergrals Sm 6=n are relatively

small and can be ignored. This is NOT the case for graphene where they make an important

contribution. In many cases the matrix elements Hmn and Smn are found using either ab-initio

methods or experimental data. The band structure is then found using the matrix equation to find

the energy levels E and wavefunction coefficients cn.

As an example consider the tightbinding band structure of a set of hydrogen atoms that are

separated by distance a on a one dimensional chain with periodic boundary conditions. We con-

sider local atomic 1s orbitals at each site. The one dimensional chain has only one atom per unit

cell. We can then directly apply Bloch’s theorem (Eq. (1)). In this problem the dominant terms

are the nearest neighbor terms, so we only consider Hn,n−1 = t and Hn,n+1 = t, Sn,n−1 = s and

Sn,n+1 = s with all other off diagonal matrix elements set to zero. In that case the Hamiltonian

matrix is tridiagonal and symmetric, with the diagonal elements equal to the energy of a 1s Hy-

drogen atom (ε = 13.6eV). The lattice vectors are then Rj = ja, where j is an integer. Bloch’s

theorem then states that the coefficients cn = e−kna where k is an integer. Now if we plug this into
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the last of Eq. (), we find (for all n),

[ε + t(e−ika + eika)− E− sE(e−ika + eika)]eikna = 0; so that Ek =
ε + 2tcos(ka)
1 + 2scos(ka)

(4)

Because we want the wave function to be single valued, periodic boundary conditions imply that

eik(N+1)a = eika, so that k = 2πl/N, with l an integer. There is a different eigenvalue for each k and

a total of N eigenvalues for an N atom system.

Generalization of the approach above to Hypercubic lattices is straightforward. We just intro-

duce analogous terms in the other directions, so that for example on a cubic lattice the bands are

given by,

E~k =
ε + 2t(cos(kxa) + cos(kya) + cos(kza))
1 + 2s(cos(kxa) + cos(kya) + cos(kza))

(5)

Extension to the cases where there are more than one atom per unit cell or where more than one

energy level per site is required lead to more interesting extensions. The case of graphene is where

there are two atoms per unit cell and only one orbital is considered, pz that is the non-bonded

orbital of the graphene system. The band structure of Silicon also has two atoms per unit cell and

is quite challenging and there has been a great deal of study using ab-initio methods that usually

grossly underestimate the band gap. A tight binding model that considers four orbitals per site

with parameters taken from experiments does pretty well. In this case the band structure requires

use of Bloch’s theorem to reduce the system to blocks of 8× 8 that are diagonalized numerically.

In the Anderson model the matrix is still taken to be tridiagonal in one dimension, moreover

we assume that Sm 6=n = 0. The only complication is that the site energies εi are drawn from a

random distribution so Bloch’s theorem does not hold. We then have to find the eigenvalues

and eigenvectors of a matrix that has dimensions N × N where N is the number of atoms in the

system. If we wanted to study the effect of disorder on the band structure of Graphene we would

again consider the eigenvalues of an N × N matrix, while for Si it would be 4N × 4N.

Graphene

Graphene has a planar structure where the chemical bonds are due to sp2 orbit als. The re-

maining unbonded p orbital is by convention called the pz orbital and it has π orientation with
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pz orbitals of other carbon atoms in a graphene sheet. We only include the pz orbital on each site

in the tight binding calculation of the graphene band structure. The covalently bonded orbitals

are much lower in energy and the 3s orbitals are much higher in energy so this is a reasonable

approximation. Graphene has two sites in its unit cell, A and B, as illustrated in Fig. 1 of Reich et

al. These two sites in combination with the basis vectors

~a1 =

√
3

2
x̂ +

1
2

ŷ; ~a2 =

√
3

2
x̂− 1

2
ŷ (6)

(~Rj = n1~a1 + n2~a2) enable reconstruction of the infinite graphene sheet. For a Bravais lattice we

have~k ·~a = 2πn

If there are two atoms per unit cell (as for graphene) then Bloch’s theorem becomes,

ψ~k(~r) = AN ∑
~Rj

ei~k·~Rj [a~kφA
~k
(~r +~δA − ~Rj) + b~kφB

~k
(~r +~δB − ~Rj)] = a~kψA

~k
+ b~kψB

~k
(7)

where ~δA is the vector from the Bravais lattice point to atom A and ~δB is the vector from the

Bravais lattice point to atom B. Multiplying on the left of this equation by the conjugate of ψA
~k

and

integrating gives,

(HAA − E(k)SAA)a~k + (HAB − E(k)SAB)b~k = 0. (8)

Similarly,

(HBA − E(k)SBA)a~k + (HBB − E(k)SBB)b~k = 0 (9)

where Hij =< ψi
~k
|H|ψj

~k
> and Sij =< ψi

~k
|ψj

~k
> with i, j = A, B. Also HBA = H∗AB, SBA = S∗AB.

Writing these equations in matrix form and taking a determinant of the matrix yields Eq. (1) of

Reich et al. (some more details of the derivation are given in Appendix 1).

Tight binding and the Anderson model

Here we make a further approximation and ignore the term < m|n > which is quite a rough

approximation but can be reintroduced relatively easily later. Moreover the tight binding model is

often written in second quantized form which is the usual form that is used in almost all theoretical

papers on the many body problem (see Appendix 2 for background). The band problems we have

4



studied may be written in the form,

HTB = ∑
i

εini + ∑
ij

tijc†
i cj (10)

where tij is the overlap integral that we use in the calculation and the sum is over all neighbors

considered in the calculation. Here we consider a one band model where there is only one orbital

per site (like our models of Graphene above). In the simplest case, we only consider nearest

neighbors. εi are the atomic energy levels at each site and in the graphene case ε is the energy of a

pz orbital. The band structure is found by setting up the tight binding matrix and diagonalizing it

to find the energy levels in the band. We also get the band eigenfunctions or wavefunctions.

The Anderson model considers the effect of disorder on the wavefunctions. If there is disorder

in εi it is the Anderson model, while if we consider disorder in the hopping elements tij it is

called off-diagonal disorder. The key question is whether the wavefunctions become localized as

a function of the disorder. To test this we calculate the participation ratio R for each eigenfunction

defined as,

R =
(∑i |ψi|2)2

∑i |ψi|4
(11)

What behavior of R is expected for fully localized as opposed to fully extended states? Here ψi are

the elements of the normalized wavefunction.

In this project you should set t = 1 and consider diagonal disorder where εi is drawn ran-

domly from a distribution [−W, W], where W is the width of the distribution. For wavefunctions

near the band edge and band center, plot IPR as a function of W, for square lattices of different size.

Appendix 1 - More details on tight binding for graphene

The tight binding approach to electronic band structure is one of the standards of condensed

matter physics and is frequently extended to the study of many body problems. The starting

point is to assume a basis set of localized orbitals on each site of an atomic structure. The atomic

structure does not have to be crystalline though often crystallinity is the correct assumption. The

simplest model consists of assuming that only one localized orbital is important at each site, a so-

called single band model. We use that approximation for Graphene, where for a graphene sheet
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that lies in the x-y plane. Our localized orbitals are thus pz orbitals on the sites of a honeycombe

lattice.

The localized basis set is φ(~r− ~Rj) where ~Rj is the location of the ith atom of the honeycombe

lattice and φ(~r) is the pz wavefunction. In its simplest form, and the one often used, the tight bind-

ing method is a single electron model where an the lth electron is described by the Hamiltonian,

Hl = −
h̄2

2m
∇2

l + ∑
i

V(~rl − ~Rj) (12)

and the N-electron Hamiltonian is ∑l Hl . In the tight binding method, Hl is broken into two parts

Hl = −
h̄2

2m
∇2

l + V(~rl − ~Rj) + ∑
j 6=l

V(~rl − ~Rj) = H0
l + δV (13)

where δV is treated as a perturbation - the eigenfunction of H0
l is φ(~r− ~Ri).

A second key ingredient in that the wavefunction of the tight-binding Hamiltonian must obey

Bloch’s theorem (for a case with one atom per unit cell),

ψ~k(~r) = ∑
~Rj

ei~k·~Rj φ(~r− ~Rj) (14)

Bloch’s theorem reduces to the requirement that the above wavefunction must be an eigenstate of

the translation operator T~Rj
= exp[i p̂ · ~Rj/h̄]. In Mathematical terms this is just the observation

that periodic systems are solved by a Fourier transform. The complexity here is that the Fourier

transform must include the particular lattice structure that is present in the system. If there are

two atoms per unit cell (as is the case for a honeycombe) then we have,

ψ~k(~r) = a~kψA
~k
(~r) + b~kψB

~k
(~r) (15)

where

ψα
~k
(~r) = ∑

~Rj

ei~k·~Rj φα(~r +~δα − ~Rj) (16)

6



where α is A or B. With this assumption we then look for solutions to

Hψ~k = ε~kψ~k (17)

Multiplying on the left of this equation by ψ∗~k
gives the matrix equation

~v†
~k

Ĥ~k~v~k = ε~k~v
†
~k

Ŝ~k~v~k (18)

where

~v†
~k
= (a∗~k , b∗~k ) (19)

and the Hamiltonian Matrix is,

Hα,β =< ψα
~k
(~r)|H|ψβ

~k
(~r) > (20)

while the overlap matrix is

Sα,β =< ψα
~k
(~r)|ψβ

~k
(~r) > (21)

Note that often the latter overlap corrections are often neglected, however in graphene they are

important and need to be kept.

The general expressions for H and S are

Hαβ
~k

= ∑
~Rm~Rl

ei~k·(~Rl−~Rm) < φα
~k
(~r +~δα − ~Rl)|H|φ

β
~k
(~r +~δβ − ~Rk) > (22)

Using translation invariance, this is,

Hαβ
~k

= N ∑
~Rl

ei~k·~Rl < φα
~k
(~r)|H0 + δV|φβ

~k
(~r +~δαβ − ~Rl) >= N(εαsαβ

~k
+ tαβ

~k
) (23)
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where ~δij = ~δj −~δi, and

sαβ
~k

= ∑
~Rl

ei~k·~Rl < φα
~k
(~r +~δα − ~Rl)φ

β
~k
(~r +~δβ − ~Rk) > (24)

and

tαβ
~k

= ∑
~Rl

ei~k·~Rl < φα
~k
(~r +~δα − ~Rl)|δV|φβ

~k
(~r +~δβ − ~Rk) > (25)

In the case of Graphene the neighbor and next nearest neighbor hopping elements are,

t =< φA ∗ (~r)|δV|φB(~r +~δ3) >; tnnn =< φA ∗ (~r)|δV|φA(~r +~a1) > (26)

and

s =< φA ∗ (~r)|φB(~r +~δ3) > .

Appendix 2 : Second quantization

First quantization is the transition from the classical momentum to the quantum momentum,

i.e. p → −ih̄∇. A many body Hamiltonian is written in terms of these operators, and we solve

for a many body wavefunction that has a specific number of particles. In second quantization

we allow the possibility of any number of particles, as we did in the ideal Fermi and Bose gases.

Moreover we work in the “number representation” rather than working with the many body

wavefunctions. Before going to the many particle case it may be useful to remember the use of

raising an lowering operators in the Harmonic oscillator.

1. Second quantization of a harmonic oscillator

Creation and annihilation operators are the same as raising and lowering operators, and for a

harmonic oscillator they are defined by,

a = α(x + i
p

mω
); a† = α(x− i

p
mω

); α = (
mω

2h̄
)1/2 (27)
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and

[a, a†] = 1; [a, a] = [a†, a†] = 0; (27)

and

n̂ = a†a; n̂|n >= n|n >; H = (n̂ +
1
2
)h̄ω (27)

with

a†|n >= (n + 1)1/2|n + 1 >; a|n >= (n)1/2|n− 1 > . (27)

2. Second quantization of many-body Boson systems

This formulation can be extended to treat a many body system composed of many harmonic

oscillators that interact. In that case, if there are N harmonic oscillators, and the number represen-

tation of a state gives the number of bosons in each state, that is |n1, n2....nM > for a system with

M single particle energy levels. The creation and annihilation operators obey the relations,

[ai, a†
j ] = δij; [ai, aj] = 0; [a†

i , a†
j ] = 0 (27)

and,

n̂i = a†
i ai; n̂i|n1...ni + 1...nM >= ni|n1...ni + 1...nM >; (27)

and

a†
i |n1...ni...nm >= (ni + 1)1/2|n1...ni + 1...nM >; (27)

ai|n1...ni...nM >= (ni)
1/2|n1...ni − 1...nM > (27)
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These operators act in the state space of many body wavefunctions constructed from single par-

ticle states, for example for a set of Harmonic oscillators, we need to construct a correctly sym-

metrized N harmonic oscillator wavefunction basis set. A state of this type is written in second

quantized form as,

|n1....ni...nM >= (a†
M)nM ..(a†

i )
ni ...(a†

1)
n1 |0 > (27)

In field theory, the interactions are often written in real space where they are called field operators.

Creation and annihilation then occurs at a point in space. Nevertheless Boson second quantized

field operators obey the similar commutation relations,

[ψ(x), ψ†(x′)] = δ(x− x′); [ψ(x), ψ(x′)] = [ψ(x)†, ψ†(x′)] = 0; n̂(x) = ψ(x)†ψ(x) (27)

3. Second quantization of many-body Fermion systems

In the case of Fermions, there are two differences: (i) each state can only have one or zero

particles, (ii) the commutators change to anticommutators, so that,

{ai, a†
j } = δij; {ai, aj} = 0; {a†

i , a†
j } = 0 (27)

and,

n̂i = a†
i ai; n̂i|n1...ni + 1...nM >= ni|n1...ni + 1...nM >; (27)

and

a†
i |n1...ni...nm >= (−1)Sk δ(ni)|n1...ni + 1...nM >; (27)

and

ai|n1...ni...nM >= (−1)Sk δ(ni − 1)|n1...ni − 1...nM > (27)
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where Sk = ∑i−1
j=1 nj. These operators act in the state space of many body wavefunctions con-

structed from single particle states. In the case of Fermions, the correct wave functions are Slater

determinants, which have the form,

Ψ(x1, x2, . . . , xN) =
1√
N!

∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(x1) ψ2(x1) · · · ψN(x1)

ψ1(x2) ψ2(x2) · · · ψN(x2)
...

...
...

ψ1(xN) ψ2(xN) · · · ψN(xN)

∣∣∣∣∣∣∣∣∣∣∣∣
. (27)

A state of this type is written in second quantized form as,

|n1....ni...nM >= (a†
M)nM ..(a†

i )
ni ...(a†

1)
n1 |0 > (27)

In field theory, Fermion second quantized field operators obey the commutation relations,

{ψ(x), ψ†(x′)} = δ(x− x′); {ψ(x), ψ(x′)} = {ψ(x)†, ψ†(x′)} = 0; n̂(x) = ψ(x)†ψ(x) (27)

4. Hamiltonians in second quantized form, both Bosons and Fermions

To work with these operators, we need to write the quantum Hamilonians that we are inter-

ested in second quantized form. This is relatively straightforward, as we can write a single particle

wavefunction as,

ψ(~r) = ∑
k

ψk(~r)a†
k |0 > (27)

so the second quantized form for the kinetic energy may be written as,

Ô = ∑
k1,k2

ak1Ok1,k2 a†
k2

, Ok1,k2 =
∫

d3rψ∗k1
(~r)O(~r)ψk2(~r) (27)

and for a pair potential we have,

V̂ = ∑
k1,k2,k3,k4

a†
k1

a†
k2

Vk1,k2,k3,k4 ak3 ak3 , Vk1,k2,k3,k4 =
∫

d3rd3r′ψ∗k1
(~r)ψ∗k2

(~r′)V(~r,~r′)ψk3(~r)ψk4(~r
′) (27)
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Note that the order of the operators must be with the destruction operators to the right so the

vacuum state has zero energy. This form of the Hamiltonian applies to both Fermions and Bosons,

as the commutation (Bosons) and anticommutation (Fermion) relations account for the symmetry

of the particles.
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