
Introduction

Molecular dynamics (MD) covers a broad class of methods in both classical and quantum

physics. Classical MD involves solving Newton’s equations for each particle in the simulation

box, while quantum or ab-intio MD involves solving for the time dependence of atoms or nuclei

by first solving Schrodinger’s equation for the relevant wavefunctions. We shall concentrate on

classical MD. This seems trivial in that we simply solve

~F = m~a = m
d2~r
dt2 . (1)

for each particle or atom in the system. Nevertheless MD turns out to be very interesting in terms

of algorithmic methods, applied math and in interpretting the results. The key difficulty is that

we are usually interested in many particles, for example in simulating the evolution of Galaxies

we need to take millions of stars, or in simulating a protein we need to take hundreds of different

amino acid residues each of which has many atoms.

There are many MD packages available for a variety of different problems. For proteins and

other biomolecules the standard packages are CHARM, AMBER, GROMOS... while for polymers

and other materials LAMMPS is a standard. A key element in all of these packages is the force that

is used. The force is found from a potential and the potential determines the type of algorithm that

is used, with different methods being applied to long range as opposed to short range potentials.

An important interatomic potential in materials science, chemistry and biology is the the

Lennard-Jones pair potential between two atoms and is given by,

V(r) = 4ε[
(σ

r

)12
−

(σ

r

)6
] (2)

This potential is accurate for inert gases, such as Argon, and makes important contributions in

more complex materials. The long range attractive part is due to induced dipole-dipole interac-

tions while the short range part is repulsive due to the overlap of the electron clouds of the two

atoms. ε sets the strength of the interaction while σ sets the range. We use rescaled units where

values ε = 1, σ = 1, so the energy is scale by ε and all lengths are scaled by σ. The force found

1



from this potential is,

~F(r) = −∂V
∂r

r̂ (3)

It is best to use Cartesian co-ordinates for your calculations.

The Verlet algorithm

MD simulations are found by numerically integrating Newton’s force law for each particle, ie.

~Fi = mi~ai = mi
d2~ri

dt2 (4)

in our cases all of the masses are the same and we set mi = 1. The key to solving differential

equations such as these is to choose a good procedure for writing a discrete approximation to the

derivatives. There are many possibilities and their accuracy is dependent on some power of the

time interval used in the discrete approximation. first derivative such as velocity may be written

in three ways: the backward difference;

v(t) =
dx
dt

=
x(t)− x(t− δt)

δt
+ O(δt) (5)

the forward difference;

v(t) =
dx
dt

=
x(t + δt)− x(t)

δt
+ O(δt) (6)

and the central difference

v(t) =
dx
dt

=
x(t + δt)− x(t− δt)

2δt
+ O(δt)2 (7)

Notice that the central difference has a correction of higher order than the forward or backward

difference, as is seen by expanding the right hand side of these equations in a Taylor series. The

second derivative can be written in a similar manner, however the best form is the central differ-

2



ence,

a(t) =
d2x(t)

dt2 =
x(t + δt)− 2x(t) + x(t− δt)

δt2 + O(δt)2 (8)

To demonstrate these equations we write the Taylor series,

x(t + δt) = x(t) + δtx′(t) +
1
2!

δt2x′′(t) +
1
3!

δt3x′′′(t) +
1
4!

δt4x′′′′(t) + .. (9)

and

x(t− δt) = x(t)− δtx′(t) +
1
2!

δt2x′′(t)− 1
3!

δt3x′′′(t) +
1
4!

δt4x′′′′(t) + .. (10)

Using the second derivative form in Newton’s equation, we write the most basic form of the Verlet

algorithm,

x(t + δt) = 2x(t)− x(t− δt) + δt2~Fi(t)/mi (11)

In order to use this equation we need the positions as two times x(t) and x(t − δt). Using the

central difference for the velocity, this may be written as,

x(t + δt) = 2x(t) + 2δtv(t)− x(t + δt) + δt2F(t)/m. (12)

Writing the full set of equations, we then have,

~xi(t + δt) = ~xi(t) + δt~vi(t) +
1
2

δt2~Fi(t)/mi (13)

which only involves the previous time. However now we need to update v(t). Here we use a

trick, namely we use a central difference on the interval between t and t + δt, so that,

~vi(t + δt) = ~vi(t) +
1
2

δt(~Fi(t + δt) + ~Fi(t)) (14)

3



Project 2 - MD simulation of Argon gas (Due March 27th)

Test of integrator: Write an Fortran MD code using Eqs. (13) and (14) to find the motion of two

atoms in a Lennard-Jones potential.

Main Project. Write an MD code in Fortran 90 which will simulate the motion of N atoms

in a cubic box of side L. Your code should have the following features (i) periodic boundary

conditions, (ii) zero center of mass momentum, (iii) a method to fix the temperature.

To check that your code is working, make sure that the energy is constant and that the

momentum is conserved. Plot out a distribution of the velocities e.g. P(vx). What should it look

like? Make a plot of the temperature as a function of time to illustrate your temperature rescaling

procedure. Once the code is working and you are able to achieve a target temperature, use it to

calculate the following equilibrium properties for a system of N=20 or more atoms.

- The energy and specific heat as a function of temperature.

- The pair distribution function in the solid and liquid phases.

- < r2 > vs time for the solid and liquid phases.

4


