
Molecular Dynamics Lecture 2

As described in the first lecture, we are using the Verlet algorithm to integrate Newton’s equa-

tions for particles interacting through the Lennard-Jones interaction. The Lennard-Jones pair po-

tential between two atoms and is given by,
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For Argon the parameters of the model are m = 6.69× 10−26kg, ε = 1.654× 10−21 J, σ = 3.405×

10−10m. The minimum of the potential is at rm = 21/6σ, and the depth of the minimum is −ε. The

time scale of the problem is τ = (mσ2/ε) = 2.17ps. Since we set m = 1, σ = 1, ε = 1, one unit

of time in our simulations corresponds to 2.17ps. Since the timestep we use is .004, it corresponds

to 8.65 f s. This is typical of simulations of atomic motion and in cases where the interactions are

strong, the timestep has to be shorter, for example in covalently bonded systems.

We want to study the behavior of the model for Argon as a function of temperature. At low

temperatures Argon is a fcc crystal and as the temperature is raised, it melts into a liquid. To see

this transition, we initialise the system as an fcc crystal and give the atoms a Maxwell-Boltzmann

distribution of velocities. We then using the Verlet algorithm you already developed to find the

time evolution of the system. The first step is thus to set up the fcc lattice, to impose periodic

boundary conditions and initialize the velocities. We use the Box-Muller method to fix the veloci-

ties to a Maxwell-Boltzmann distribution and then scale the velocities to ensure that the center of

mass velocity is zero.

To set the temperature we can use the relation between the kinetic energy and the velocities

given by the Maxwell-Boltzmann distribution,
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You will find that you cannot set the initial temperature accurately, so you need to rescale all of

the velocities by a constant factor in order to adjust the temperature. After 4 or 5 temperature

rescalings you should reach a value close to the target temperature.

Things to calculate
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From the MD simulation we can calculate a variety of physical properties. Choose two of

the following. (i) The total energy as a function of temperature. (ii) The average mean square

displacement of each atom as a function of time, for several temperatures. (iii) The pair correlation

function, for several temperatures. To find this function make a histogram of the values of rij as

a function of r with a box size δr = 0.1 and count the number of atom pairs that lie in each box.

Also (iv) The pressure is given by,

pV = NkBT +
1
3 ∑

i<j
~rij · ~Fij (3)

where ~rij is the vector between atoms i and j and ~Fij is the force between atoms i and j. This

equation is follows from the virial theorem though the virial equation , and (v) The specific heat

at constant volume, CV , is found from the kinetic energy fluctuations using a formula due to

Lebowitz,

< δK2 >

K2 =
2

3N
(1− 3N

2CV
) (4)

Finally the pair distribution function g(r) is the probability that two atoms are separated by

distance r. To find this function make a histogram of the values of rij as a function of r with a

histogram interval size δr = 0.1 and count the number of atom pairs that lie in each interval.

Tricks of the trade

1. Setting up the initial fcc lattice. A code for this is posted as is a Mathematica code to visualize

the structure.

2. Setting up the initial velocity. For this we use the Box-Muller method. We want to choose

velocities from the Maxwell-Boltzmann distribution,
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The Box-Muller method uses random numbers drawn from [0,1] to generate random numbers

drawn from the standard normal distribution exp[−u2/2]/(2π)1/2. See the Wikipedia page on

this to see how to do it. Once you have the random numbers from this normalized distribution,
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you can find a velocity component using v = (kBT/m)1/2u.

You also need to set the center of mass velocity to zero and to do this, sum up all the velocities

(as a vector), divide by N (the number of atoms) and subtract this vector from each vector velocity.

During the computation check that the center of mass velocity stays zero.

3. Periodic boundary conditions. These have to be used in two ways for a system which has size

box in each direction. (i) First when calculating the distance between two atoms, you have to take

the smallest distance taking into consideration the boundary conditions. This can be done for the

x,y and z directions separately and is achieved using the following code for each atom pair,

dr(:) = r(j, :)− r(i, :)

dr(:) = dr(:)− NINT(dr(:)/box) ∗ box

(ii) The second way in which the boundary conditions come in is that after the new positions are

calculated in the Verlet algorithm, we have to check to see if any particles are outside the box. If

they are, they must be moved to their appropriate position on the other side of the box. This is

achieved using,

x(:, :) = MODULO(x(:, :), box)

4. Check energy conservation. The total energy (KE + PE) is conserved to six digits and the center

of mass momentum stays zero to the same accuracy. These are essential checks on the code
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