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PHY481 - Lecture 1 (Fall 2009)
Griffiths: Chapter 1 (up to roughly page 10)

A. A Brief History
Early observations of magnetic and electric properties include the lodestone which is a magnetic rock and amber

that was considered special due to its ability to produce a strong static discharge.
More scientific ideas about charge and the flow of charge were developed by Gray, Franklin etc in the middle of the

18th century. Coulomb made these ideas concrete by measuring the force between charges and developing a formula
to describe these forces (1780’s). This formula is the basis of electrostatics (stationary charge distributions). However
it is often easier to use a reformulation of this law to a form called Gauss’s law to solve problems.

Ampere and Oersted noticed the fact that a DC current generates a magnetic field. Biot and Savart developed a
formula to describe this. This occured in the 1820’s. Analysis of the magnetic fields generated by DC currents is
called magnetostatics. The Biot-Savart law, or Ampere’s law is the basis of magnetostatics. Ampere also noticed that
a time varying electric field also induces a magnetic field. Ampere’s law describes this phenomenon (1820’s).

Faraday observed that a time varying magnetic flux leads to an induced emf (1831). Joseph Henry also observed
indications of this in 1830, but Faraday’s experiments are considered definitive. Faraday’s law describes these phe-
nomenon and is the basis of electric motors and generators.

Heaviside and Gibbs wrote down the equations of electrostatics, magnetostatics, magnetic induction and a gener-
alized form of Ampere’s law in a unified form building upon two of Maxwell’s papers from (1861-65). In the early
literature the collection of these four equations, now known as Maxwell’s equations, were therefore called the Hertz-
Heaviside equations. Hertz was included because he did experiments verifying Maxwell’s prediction of EM waves.
However Einstein decided to call them the Maxwell-Hertz equations and the name stuck. Anyway they are considered
a complete theory of classical electricity and magnetism or electromagnetism and can be considered the basis of this
course.

Often an additional equation is added to this set - the Lorentz Force law. The Lorentz force law describes the way
in which electric and magnetic fields effect a moving charge. This equation was developed by Lorentz (1892/1895).

The chronology of these discoveries and other physics discoveries is available at the history of physics from the aps

B. Basic concepts about charge
- There are two types of charge, positive and negative.
- Charge is conserved.
- Charge is quantized. e = 1.6× 10−19C.

C. Basic concepts about materials
- Conductor - If there is a voltage across a conductor, current flows.
- Insulator - Even if there is a voltage across an insulator, current does not flow.
- Semiconductor = Insulator at low voltage and temperature.
- Superconductor = Conductor, for static charges and no applied magnetic field.

D. The first quantitative EM law: Coulomb’s law (1780’s)
The starting point in electrostatics is Coulomb’s law, which gives the force between two stationary charges,

~F = k
Qq

r2
r̂ = k

Qq

r3
~r (1)

- Q, q are stationary charges. Their units are coulombs (C)
- r̂ is a unit vector along the line between the two charges.
- ~r is the vector distance between the two charges.
- k = 9× 109Nm2/C2 = 9× 109kgm3/C2s2.
- k = 1/4πε0. ε0 is the permittivity of free space.

E. Gravitational force law : Measured by Cavandish 1790’s

~FG = −GMm

r2
r̂ (2)

- G = 6.67× 10−11Nm2/kg2. The gravitational force is much weaker than the electostatic force.

Note that in these expressions ~r = ~rQ − ~rq. Griffiths gives this difference a new symbol. I will write out the full
expression whenever these is a possibility of confusion.
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Example
Find the ratio of the magnitudes of the gravitational and electrostatic forces between two protons.
Solution The ratio of the magnitudes of the gravitational and electrostatic forces is,

FG

F
=
GMm

kQq
(3)

For two protons, we have, M = m = 1.67× 10−27kg and Q = q = 1.6× 10−19C. Plugging these numbers yields,

FG

F
(two protons) =

6.67× 10−11(1.67× 10−27)2

9× 109(1.6× 10−19)2
= 8.1× 10−35 (4)

F. Most charge is “bound”
Due to the fact that the force between charges is so large, most charge is bound. That means that negative and

positive charges are close to each other in regions where the total charge is almost zero. This raises the question.
Why don’t charges self destruct by crashing into each other and annihilating? The answer is in quantum mechanics,
which provides an understanding of how atoms are stable. Atoms are composed of electrons orbiting the nuclei which
contains the protons. This provides a stable configuration of bound charges. Within electrostatics bound charges still
form dipoles. There are many more charge dipoles than there are free charges. Many electrostatic effects are due to
dipoles rather than free charges, so we need to understand dipoles well.

No free magnetic charges have been observed, so that N and S magnetic poles always come in pairs. Nevertheless
the search of free magnetic charge, ie magnetic monopoles, continues. The sources of magnetic fields are currents or
moving charges.

G. Force between many charges - superposition
Force on a charge q due to many other charges, Q1, Q2, ...Qn is just the sum of the forces due to each of these

charges, ie.

~Ftot =
n∑

i=1

k
Qiq

|~r − ~ri|3
(~r − ~ri) (5)

This is a vector sum, so the math can get messy. Here ~ri is the position of the charge Qi while ~r is the position of
charge q.

The principle of superposition also applies when there is a continuous distribution of charge. For example charge
distributions on rods, discs, spheres etc. However when treating these distibutions, the sum in Eq. (5) becomes an
integral. In treating these problems, we define a small element of charge dQ. This is the amount of charge in a small
part of the continuous charge distribution. We shall consider three cases:

- Lines: Then dQ = λdx, where λ is the linear charge density.
- Surfaces: Then dQ = σdA, where σ is the surface charge density.
- Volumes: Then dQ = ρdV , where ρ is the volume charge density.

H. Maxwell’s equations in vacuum (Chapter 7 of Griffiths)
1. Gauss’ law for electric field - the basis of electrostatics (Chapters 2-3 of Griffiths)

The Electric flux, φE , through a closed surface, A is proportional to the net charge, q, enclosed within that surface.
d~a = dan̂.

φE =
∮

~E · d~a =
q

ε0
(6)

Differential form,

~∇ · ~E =
ρ

ε0
(7)

2. Gauss’s law for magnetic field
The Magnetic flux, φB , through a closed surface, a is equal to zero.

φB =
∮

~B · d~a = 0 (8)
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Differential form

~∇ · ~B = 0 (9)

3. Generalized Ampere’s law - Magnetostatics (Chapter 5 of Griffiths)
The path integral of the magnetic field around any closed loop, is proportional to the current enclosed by the loop

plus the displacement current enclosed by the loop.∮
~B · d~l = µ0I + µ0ε0

dφE

dt
(10)

Differential form

~∇∧ ~B = µ0
~j + µ0ε0

∂ ~E

∂t
(11)

4. Faraday’s law - magnetic induction (Chapter 7 of PS)
The emf induced in a closed loop, is proportional to the negative of the rate of change of the magnetic flux, φB ,

through the closed loop, ∮
~E · d~l = −dφB

dt
(12)

Differential form

~∇∧ ~E = −∂
~B

∂t
(13)

5. Lorentz force law
The force on a charge moving with velocity ~v in an electromagnetic field is given by,

~F = q( ~E + ~v ∧ ~B) (14)

Chapters 4 and 6 of Griffiths cover electric and magnetic fields inside matter where some extensions of Maxwell’s
equations above are needed.

I. Vectors properties and vector operations
1. Consider vectors defined in a orthogonal basis set, with unit vectors x̂, ĵ, k̂ in the x,y and z directions respectively.

Then a vector ~A may be written,

~A = Axx̂+Ay ŷ +Az ẑ = (Ax, Ay, Az) (15)

2. Vector addition and subtraction is carried out component by component, for example for vectors ~A and ~B we
have,

~A+ ~B = (Ax +Bx, Ay +By, Az +Bz) (16)

Pictorially this corresponds adding vectors “head to tail”.

3. Scalar multiplication is also carried out component-wise, so that,

c ~A = (cAx, cAy, cAz) (17)

4. The length of a vector is,

A = | ~A| = (A2
x +A2

y +A2
z)1/2 (18)

5 The dot product of two vectors is a scalar given by,

~A · ~B = AxBx +AyBy +AzBz = ABcos(θ) = ~B · ~A (19)
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Note that the length of a vector ~A is given by A = ( ~A · ~A)1/2

6. The cross product of two vectors gives a third vector which is perpendicular to the plane of the two starting
vectors. This is a very important property as often we want to use the normal to a plane, for example in defining the
normal to a surface. The cross product is given by,

~A ∧ ~B =

∣∣∣∣∣∣
x̂ ŷ ẑ
Ax Ay Az

Bx By Bz

∣∣∣∣∣∣ = ABsin(θ)n̂ = (AyBz −AzBy, AzBx −AxBz, AxBy −AyBx) (20)

Note also that ~A ∧ ~B = − ~B ∧ ~A
7. Vector triple products

~A · ( ~B ∧ ~C) = ~C · ( ~A ∧ ~B) = ~B · (~C ∧ ~A) =

∣∣∣∣∣∣
Ax Ay Az

Bx By Bz

Cx Cy Cz

∣∣∣∣∣∣ (21)

This triple product gives the volume of a parallelepided, with the vectors ~B and ~C forming the base. The second
triple product is,

~A ∧ ( ~B ∧ ~C) = B( ~A · ~C)− C( ~A · ~B) (22)

Note that using this identity all vector expressions containing cross products can be reduced to expressions containing
at most one cross product.

8. A pseudoscalar and pseudovector (or axial vector). A pseudovector is like a vector except that it does not change
sign under inversion, for example if ~A and ~B are vectors, then ~p = ~A ∧ ~B is a pseudovector as inversion of ~A and ~B
has no effect on ~p, whereas a true vector would change sign. Pseudoscalars may be formed by combining vectors and
pseudovectors, for example the triple product.

9. Commutative (Exchange order). Scalar addition and multiplication are commutative, but subtraction and
division are not. Vector addition and dot product are commutative, but subtraction and cross product are not.
Associative (Move parentheses). Which operations are associative, e.g. ( ~A · ~B) ∧ ~C) does not make mathematical
sense. Note that division and subtraction are not associative. Distributive (Operate on a sum of terms inside a
bracket). e.g. a scalar times a sum of vectors is distributive. Vector operations are distributive under multiplication
by a scalar.

10. The position or displacement vector and the definition of a vector. The position vector in Cartesian co-ordinates
is ~r = xx̂+ yŷ + zẑ. This vector may be transformed by a co-ordinate transformation, e.g. rotations or translations.
A quantity ~A = Axx̂+Ay~y+Az~z is a vector if it transforms in the same way as ~r under co-ordinate transformations.


