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PHY481 - Lecture 7: The electrostatic potential and potential energy
Griffiths: Chapter 2

B. Electric potential energy and electric potential

Physical definition
The electric potential energy (U) is the potential energy due to the electrostatic force. As always only differences

in potential energy correspond to physical observables. However we define a reference potential energy and calculate
all differences in potential energy with respect to this reference. In electrostatics, the potential energy is usually, but
not always (see below), defined to be zero when the charges are an infinite distance apart.

The difference in potential energy in moving a charge between two positions a and b is defined in terms of the work
done in moving the charge between these two positions, so that,

∆Uab =
∫ b

a

~Fext · ~dl = −
∫ b

a

~F · ~dl (1)

where ~F is the Coulomb force on the charge and ~dl is a small element of distance along the path we choose to take
from a to b. Note that Eq. (1) does not depend on the path we take. All paths from a to b give the same change
in potential energy. Note also that Eq. (1) is true only for conservative forces, ie. systems in which there is no
dissipation (e.g. friction).

Instead of using the Coulomb force, we defined the electric field which is the force per unit charge. In the same way
we define the electric potential, V , to be the potential energy per unit charge, ie. U = qV . The electric potential is
so important it is given its own unit, the volt (V ). In terms of the electric potential, equation (1) is,

∆Vab = −
∫ b

a

~E · ~dl (2)

From this equation we see that the units of voltage are Nm/C. We have defined the volt to be the unit of voltage,
so we have the relation V = Nm/C or V/m = N/C. So far we have used N/C as the units of electric field. This is
usual in electrostatics. However in circuit theory it is usual to use volts/meter (V/m).

If we move a charge q from a point a to a point b, then the charge in potential energy, Uab, of the system is

∆Uab = −
∫ b

a

~F · ~dl (3)

- ~F is the electric force on charge q due to all of the other charges in the system
- ~dl is a small displacement along the path we choose to take from a to b.

If we define the electric potential to be the potential energy per unit charge, so that V = U/q, then the difference in
electric potential is given by,

∆Vab =
1
q

∆Uab = −
∫ b

a

~E · ~dl (4)

Often, we define the potential energy and hence the potential of a charge at infinity to be zero, however in some cases
this is not possible for mathematical reasons.

With the definition of potential given in Eq. (4) we can calculate the potential difference between any pair of
positions.

Mathematical Derivation
The electrostatic potential can also be deduced on purely mathematical grounds using the relation ~∇∧ ~E = 0. This

equation is satisfied when ~E = −~∇V due to the vector identity ~∇∧ (~∇V ) = 0 which holds for any scalar function V .
In terms of the electrostatic potential. Integrating ~E = −~∇V leads to Eq. (4) (see Eq. (1.55) of Griffiths). Note that
using ~E = −~∇V , the differential form of Gauss’s law then becomes,

∇2V = −ρ/ε0. (5)

This is called Poisson’s equation and is the most commonly solved form of Gauss’s law. The special case ρ = 0 is
also very important and is called Laplace’s equation. In fact most of Chapter 3 of Griffiths is devoted to Laplace’s
equation. Laplace’s equation is most non-trivial when boundary conditions corresponding to finite charge or
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electostatic potential are used. We then need to solve boundary value problems of partial differential equations.

Methods for calculating the electrostatic potential
1. Direct method: Find the electric field by using e.g. Gauss’s law and then carry out the integral,

V (r) = −
∫ r

∞
~E · d~l (6)

If this integral diverges, we cannot use a reference potential at infinity, but instead can only talk of voltages across
finite distances. For example if the electric field is a constant and directed in the r̂ direction, then we have,

Vab = −
∫ rb

ra

~E · d~l→ −E(rb − ra) = −Ed if E is constant (7)

where d = rb − ra.

2. Superposition: Do a scalar addition of the contributions from each charge,

V (~r) =
∑
i

kqi
|~r − ~ri|

→
∫
d~r′

kρ(~r′)
|~r − ~r′|

(8)

where the last expression applies to a continuous charge distribution with charge density ρ. In Chapter 3 we will
carry out a multipole expansion based on superposition.

3. Differential form: Here we use Poisson’s equation,

∇2V = − ρ

ε0
(9)

Note that since we know that for a point charge, Q, at position ~r, ρ(~r) = Qδ(~r − ~r′), then the solution to this
equation for this case is V (|~r − ~r′|) = kQ/|~r − ~r′|.

4. Image charge method: This is a special method that is very useful in many problems with special symmetry. It
will be discussed in detail in Chapter 3.

Integrating the electric field to find the potential difference
(i) Electric potential due to a point charge
The electric field due to a point charge is

~E =
kQr̂

r2
(10)

The electric potential due to a point charge is then,

V = −
∫ r

∞

kQr̂

r′2
· ~dl = −

∫ r

∞

kQr̂

r′2
· dr′r̂ = −kQ

∫ r

∞

dr′

r′2
=
kQ

r
(11)

(ii) Electric potential inside and outside a uniform shell of charge
Take the shell to have radius R and total charge Q. As for a point charge the integration is taken from ∞ to the

point r. In the regime r > R the integration is the same as that for a point charge, so we find that V (r > R) = kQ/r.
For r < R, the part of the path in the regime r < R makes no contribution as the electric field in this regime is zero.
We therefore have V (r < R) = kQ/R. The electric potential for two concentric uniform shells, with radii R1 and R2

(with R1 > R2), and charges Q1 and Q2. We can use superposition to find,

V (r < R2) = kQ2/R2 + kQ1/R1; V (R2 < r < R1) = kQ1/R+ kQ2/r; V (r > R1) = k(Q1 +Q2)/r (12)

(iii) Electric potential for a uniform cylinder of charge
The electric field is ~E = λŝ/(2πε0s). The potential difference between two points b > s > s1 is then,

Vb>s>s1 = −
∫ s

b

λ

2πε0s′
ds′ =

λ

2πε0
ln(b/s) (13)
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The potential for s < s1 is the same at that at s = s1, ie. λln(b/s1)/(2πε0). Notice that in this problem we do not
take infinity as the reference point as in that limit this expression diverges. This is not unphysical as we can never
make a truly infinite line of charge. Instead this formula only applies in regimes where both b and s are much smaller
than the length of the cylinder of charge. Using superposition we can write down the potential for the case of two
concentric cylinders of radii s1 and s2 and charge per unit length λ1 and λ2,

V (s < s2) =
1

2πε0
[λ1ln(b/s1) + λ2ln(b/s2)];

V (s2 < s < s1) =
1

2πε0
[λ1ln(b/s1) + λ2ln(b/s)]; V (s > s1) =

(λ1 + λ2)
2πε0

ln(b/s) (14)

(iv) Electric potential for a uniform sheet of charge
Consider an infinite, uniform sheet of charge with charge density σ lying in the x-y plane. The electric potential

between two points b > z on the positive z-axis is given by,

V (b− z) = −
∫ z

b

σ

2ε0
ẑ · dzẑ =

σ

2ε0
(b− z). (15)

This is an example of a very important case, name that of a constant electric field. In general if there is a constant
electric field ~E = E0ẑ, then the electrostatic potential is −E0z + constant. This form of the potential (usually with
constant = 0) will be used extensively in Chapter 3.

Superposition method
More complex systems where the symmetry is not high enough to find the electric field using Gauss’s law, it is

often better to find the electrostatic potential first. The math is a little easier as the electrostatic potential is a scalar.
Consider for example a uniform ring of charge, with charge per unit length (λ) and radius R. We calculated the
electric field on the z axis in Lecture 5 (see Eq. (7), (8) of the lecture notes). To find the potential on the z-axis, we
carry out a similar calculation,

V (z) =
∫
kdQ(φ)
|r|

=
∫ 2π

0

k
λRdφ

r
=

kQ

(R2 + z2)1/2
(16)

where we used Q = 2πRλ. It is easy to check that the electric field Ez = −∂V/∂z found from V (z) is the same as
Eq. (7) of Lecture 5. Another good example is a finite rod of charge. This can also be used to find the potential due
to a square loop of charge.

We have not yet carried out superposition calculations for three dimensional charge distributions - for the electric
field case we only considered one dimensional and two dimensional cases. Three dimensional cases are also often
considered so it is good to see how it works. The simplest case is a uniform sphere of charge, which can be solved
using Gauss’s law and then integration, so we can check the result.

Lets consider a less trivial case, namely a uniform shell of charge density σ (Example 7 of Chapter 2 of Griffiths).
Of course we know the answer from using Gauss’s law, so we can check our result. The procedure we use here will also
be used extensively in the image charge calculations of Chapter 3. If we are interested in a general point ~r, without
loss of generality, we can choose ~r to lie on the z-axis. The superposition expression for the potential is then,

V (r) =
∫
k
dQ(θ′, φ′)d~r′

|~r − ~r′|
= kσ

∫ π

0

∫ 2π

0

R2sinθ′dθ′dφ′

(R2 + r2 − 2Rrcos(θ′))1/2
(17)

The φ′ integral gives 2π, while the θ′ integral is also easy as 2Rr sin(θ′) is the derivative of the argument of the
denominator, so we find,

V (r) = 2πkσ
R2

Rr
(R2 + r2 − 2Rrcos(θ′))1/2|π0

= 2πkσ
R

r
[(R2 + r2 + 2Rr)1/2 − (R2 + r2 − 2Rr)1/2] = 2πkσ

R

r
[R+ r − |R− r|] (18)

For r > R, we take the negative sign in the modulus, so that V (r > R) = 4πkσR2/r = kQ/r. For r < R, we take the
positive sign in the modulus, so that V (r < R) = kQ/R, as expected. Problem 2.28 in Homework 2 asks that you
extend this calculation to the case of a uniform sphere of charge.


