PHY294H

- Professor: Joey Huston
- email:huston@msu.edu
- office: BPS3230
- Homework will be with Mastering Physics (and an average of 1 handwritten problem per week)
 - Problem 29.77 (already assigned) will be the hand-in problem for 4th MP assignment (due Wed Feb. 10)
 - Help-room hours: 12:40-2:40 Tues; 3:00-4:00 PM Friday
- Quizzes by iclicker (sometimes hand-written)
- Exam next Thursday: bring 1(-sided) 8.5X11" sheet of notes
 - practice exam available today
- Course website: www.pa.msu.edu/~huston/phy294h/index.html
 - lectures will be posted frequently, mostly every day if I can remember to do so

Current

- Let me define the electric current I
 - T = dQ/dt (in the direction of the E field)
 - note that this is not the direction that the electrons move, but that's the convention we have
 - all of the effects that we are interested in are the same whether electrons move to the left or (fictitious) positive charges move to the right
 - unit of charge is the Coulomb (C)
 - unit of current is C/S or A (Ampere)
 - 1 A = 1 C/s

Surface charges have created an electric field inside the wire.

The current \vec{l} is the rate at which the electric field seems to push *positive* charge through the wire. \vec{l} is in the direction of \vec{E} .

Another dead guy

- Andre Ampere (1775-1836)
- We'll revisit him when we study the relationship between electric current and the magnetic field

Electron current

- We define the electron current i_e to be the number of electrons per second that pass through a cross section of the conductor.
- The number N_e of electrons that pass through the cross section during the time interval Δt is

$$N_{\rm e} = i_{\rm e} \Delta t$$

The sea of electrons flows through a wire at the drift speed v_d , much like a fluid flowing through a pipe.

The electron current i_e is the number of electrons passing through this cross section of the wire per second.

Electron current

 If the number density of conduction electrons is n_e, then the total number of electrons in the shaded cylinder is

$$N_{\rm e} = n_{\rm e} V$$
$$= n_{\rm e} A \Delta x$$
$$= n_{\rm e} A v_{\rm d} \Delta t$$

So the electron current is:

$$i_{\rm e} = n_{\rm e} A v_{\rm d}$$

Current

- $I = \Delta Q / \Delta t = e N_e / \Delta t = e i$
 - where we defined i as the electron current
 - each electron carries a charge e, so the current is the rate at which electrons move times the charge that each one carries
 - as Andre Ampere would say, eh voila!
- Define current density J
 - ↓ J = I/A = nev_d

The current \vec{I} is defined to point in the direction of \vec{E} . It is the direction in which positive charge carriers would move.

The electron current *i* is the motion of actual charge carriers. It is opposite to \vec{E} and \vec{I} .

iclicker question

A wire carries a current. If both the wire diameter and the electron drift speed are doubled, the electron current increases by a factor of

- A. 2.
- B. 4.
- C. 6.
- D. 8.
- E. Some other value.

A wire carries a current. If both the wire diameter and the electron drift speed are doubled, the electron current increases by a factor of

- A. 2.
- B. 4.
- C. 6.

E. Some other value.

- In most metals, each atom contributes one valence electron to the sea of electrons.
- Thus the number of conduction electrons n_e is the same as the number of atoms per cubic meter.

TABLE 30.1Conduction-electrondensity in metals

Metal	Electron density (m ⁻³)
Aluminum	$6.0 imes 10^{28}$
Copper	$8.5 imes 10^{28}$
Iron	$8.5 imes 10^{28}$
Gold	$5.9 imes 10^{28}$
Silver	$5.8 imes 10^{28}$

- How long should it take to discharge this capacitor?
- A typical drift speed of electron current through a wire is v_d ≈ 10⁻⁴ m/s.
- At this rate, it would take an electron about 2000 s (over half an hour) to travel 20 cm.

- But real capacitors discharge almost instantaneously!
- What's wrong with our calculation?

- The wire is already full of electrons!
- We don't have to wait for electrons to move all the way through the wire from one plate to another.
- We just need to slightly rearrange the charges on the plates and in the wire.

1. The 10^{11} excess electrons on the negative plate move into the wire. The length of wire needed to accommodate these electrons is only 4×10^{-13} m.

2. The sea of 5×10^{22} electrons in the wire is pushed to the side. It moves only 4×10^{-13} m, taking almost no time.

Pushing electrons

 As we discussed before, there needs to be an electric field created inside the wire in order for the electrons to have a net velocity in a particular direction

Because of collisions with atoms, a steady push is needed to move the sea of electrons at steady speed. Electrons are negative, so \vec{F}_{push} is opposite to \vec{E} .

Let's go back to our two charged plates

- With no connection in the middle, the charges distribute themselves over the surface of every conductor (the wires and the plates)
 - remember no excess electrons in the interior of a conductor in equilibrium situations
- If I suddenly connect the two ends of the wires, then the electrons near the negative (previously) end move onto the positive (previously) end
- Now there's a non-uniform distribution of charge and a non-equilibrium situation
 - not static so electrons throughout the conductor

Electric field

- Think about what's happening right after I connect the two wire ends
- Just consider 4 separate rings of the wire

 $\vec{E}_{\rm A}$ points away from A and $\vec{E}_{\rm B}$ points

away from B, but A has more charge

The nonuniform charge distribution

creates a net field to the right at all

The four rings A through D model the nonuniform charge distribution on the wire.

Electric field

(b) $E_{\rm ring}$ Maximum field strength (a) We know the electric field from a ring of charge Each ring of charge 4R - 3R - 2R - R \overrightarrow{R} 2R 3R 4RThe field is zero contributes in the center. Because of the gradient, there's a net electric field going from the more positive end towards the more negative end $\vec{E}_{\rm A}$ points away from A and $\vec{E}_{\rm B}$ points The nonuniform charge distribution away from B, but A has more charge creates a net field to the right at all so the net field points to the right. points inside the wire. $\vec{E}_{\rm B}$ $\vec{E}_{\rm C}$ $\vec{E}_{\rm D}$ $\vec{E}_{\rm B}$ $E_{\rm C}$ The four rings A through D model the nonuniform charge distribution on the wire. \vec{E}_{ne} $\vec{E}_{..}$ В D А

 This model even explains electrons turning corners

A few extra negative charges on the outside corner exert a repulsive force on the electrons, forcing the current to turn the corner.

...

Microscopic model of conduction

- Electrons are travelling at about 10⁵ m/s
- Can think of them as behaving^v_a like gas molecules, travelling in straight lines between collisions
 - free electron or Drude model
 - doesn' t take into account some quantum mechanical effects but good enough for the moment
- After an electric field is applied, the electrons are now following parabolic paths

- For a gas of electrons, we can write $v_{av} = [3kT/m]^{0.5}$
- Can think of them as behaving $V_{av} = [3(1.38 \times 10^{-23} \text{ J/K})(293 \text{ K})/9.1 \times 10^{-31} \text{ kg})]^{1/2}$

 $v_{av} = 1.2 \text{ X} 10^5 \text{ m/s}$

Microscopic model of conduction

- Because of the electric field, the electron is going to experience an acceleration (between collisions) and the velocity in the direction of the electric field will look like
 - $v_x = v_{ix} eE/m \Delta t$
 - acceleration is opposite the direction of the E field

with velocity v_{ix} .

Mean time between collisions

- Let the average time between collisions be τ
- Then we can write
 - $v_D = -eE\tau/m$
 - after collisions v_{ix} ~0 so ignore first term
- But remember i(electron current) = nAv_d
 - so |i| = (neτA/m)·E
 - the electron current is proportional to the strength of the electric field
 - important result that we will re-visit

... or equivalently

- Or equivalently can think of the collisions as being a drag force acting on the electrons
 - ma = -eE (a constant)v
 - looking at units the constant must have units of mass/time
 - ma = -eE m/τ v
 - when v reaches terminal speed (v_d), a = 0
 - $v_d = -eE\tau/m$

Conductivity and resistivity

• Define the conductivity of a material

$$\sigma = \text{conductivity} = \frac{n_{\rm e}e^2\pi}{m}$$

- The conductivity of a material characterizes the material as whole
- The current density J is related to the conductivity and the electric field by

$$J = \sigma E$$

 Can define the resistivity as the reciprocal of the conductivity->how difficult is it for the electrons to move

$$\rho = \text{resistivity} = \frac{1}{\sigma} = \frac{m}{n_{\rm e}e^2\tau}$$

Conductivity and resistivity

Material	Resistivity (Ωm)	Conductivity $(\Omega^{-1}m^{-1})$
Aluminum	$2.8 imes 10^{-8}$	3.5×10^{7}
Copper	$1.7 imes 10^{-8}$	$6.0 imes 10^{7}$
Gold	$2.4 imes 10^{-8}$	4.1×10^{7}
Iron	$9.7 imes 10^{-8}$	$1.0 imes 10^7$
Silver	$1.6 imes 10^{-8}$	6.2×10^{7}
Tungsten	$5.6 imes 10^{-8}$	$1.8 imes 10^7$
Nichrome*	$1.5 imes 10^{-6}$	6.7×10^{5}
Carbon	$3.5 imes 10^{-5}$	$2.9 imes 10^4$

 TABLE 30.2
 Resistivity and conductivity of conducting materials

*Nickel-chromium alloy used for heating wires.