Nagy,

Tibor

Keep this exam CLOSED until advised by the instructor.

50 minute long closed book exam.
Fill out the bubble sheet: last name, first initial, student number (PID). Leave the section, code, form and signature areas empty.

Three two-sided handwritten 8.5 by 11 help sheets are allowed.
When done, hand in your test and your bubble sheet.
Thank you and good luck!
Posssibly useful constants:

- $\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2}$
- $\mathrm{G}=6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$
- $\rho_{\text {water }}=1000 \mathrm{~kg} / \mathrm{m}^{3}=1 \mathrm{~kg} / \mathrm{l}=1 \mathrm{~g} / \mathrm{cm}^{3}$
- $1 \mathrm{~atm}=101.3 \mathrm{kPa}$
- $\mathrm{N}_{\mathrm{A}}=6.02 \times 10^{23} 1 / \mathrm{mol}$
- $\mathrm{R}=8.31 \mathrm{~J} /(\mathrm{molK})$
- $\mathrm{k}_{\mathrm{B}}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
- $0{ }^{\circ} \mathrm{C}=273.15 \mathrm{~K}$

nagytibo@msu

Please, sit in row C .

1 pt Are you sitting in the seat assigned?
$1 . \mathrm{A} \bigcirc \mathrm{Yes}, \mathrm{I} \mathrm{am}$.

4 pt Planet-X has a mass of $4.32 \times 10^{24} \mathrm{~kg}$ and a radius of 5060 km . What is the Escape Speed ie. the minimum speed required for a satellite in order to break free permanently from the planet? (in km /s)
2. $\mathbf{A} \bigcirc 4.87$
$\mathrm{B} \bigcirc 5.70$
$\mathrm{C} \bigcirc$
6.66
$\mathbf{D} \bigcirc 7.80$
E $\bigcirc 9.12$
FO 1.07×10^{1}
$\mathbf{G} \bigcirc 1.25 \times 10^{1}$
$\mathbf{H} \bigcirc 1.46 \times 10^{1}$
Escape Speed or Second Cosmic
speed: $v_{I I}=\sqrt{\frac{2 G M}{R}}$
$G=6.67 \cdot 10^{-11} \frac{\mathrm{Nm}^{2}}{\mathrm{~kg}^{2}}$: Univ. Grav. Constant $M=4.32 \cdot 10^{24} \mathrm{~kg}$: mass of the planet $R=5060 \mathrm{~km}=5.06 \cdot 10^{6} \mathrm{~m}$: radius of
$\sqrt{-11} \cdot 320^{24}$ the planet the planet
$10,672 \frac{\mathrm{~m}}{\mathrm{~s}} \cong$ $\cong 10.7 \frac{\mathrm{~km}}{\mathrm{~s}}$

$$
v_{\text {II }}=1.07 \cdot 10^{1} \frac{\mathrm{~km}}{\mathrm{~s}}
$$

The height of the Mercury column in the Toricelli barometer is $\mathrm{h}=760 \mathrm{~mm}$ here on Earth at sea level. See figure.

$3 p t$ and the gravitational field is six times weaker on the Moon than here on Earth.
$\mathbf{3} \mathbf{A} \bigcirc 0 \mathrm{~mm}$.
B $\bigcirc 127 \mathrm{~mm}$, six times shorter.
C $\bigcirc 760 \mathrm{~mm}$, same as on Earth.
D $\bigcirc 4560 \mathrm{~mm}$, six times higher.

3 pt What would be the height of the Mercury column inside a Moon-base where an Earth-like air atmosphere is maintained for comfortable living? (The Toricelli barometer has sufficient amount of Mercury, and the glass tube can be extended, if necessary.)
4. $\mathbf{A} \bigcirc 0 \mathrm{~mm}$.

B $\bigcirc 4560 \mathrm{~mm}$, six times higher.
C 127 mm , six times shorter.
D $\bigcirc 760 \mathrm{~mm}$, same as on Earth.
Since the Moon doesn't have any kind of atmosphere, the barometer will show zero pressure.
Inside a Moon-base with $p=1$ atm: $p=s g h$ (S : density: constant!) Since g is six times less, therefore we need a Mercury column six times taller to balance out the one atm pressure.

4 pt An object weighs 87.9 N in air. When it is suspended from a force scale and completely immersed in water the scale reads 18.4 N . Determine the density of the object.
(in $\mathrm{kg} / \mathrm{m}^{\wedge} 3$)
5. $\mathbf{A} \bigcirc 6.48 \times 10^{2}$
$\mathbf{B} \bigcirc 8.09 \times 10^{2}$
C $\bigcirc 1.01 \times 10^{3}$
D 1.26×10^{3}
$\mathbf{E} \bigcirc 1.58 \times 10^{3}$
F $\bigcirc 1.98 \times 10^{3}$
G
2.47×10^{3}
H 3.09×10^{3}
in
air

in water

$$
\left.\begin{array}{l}
T_{1}=m g \\
T_{2}+B=m g
\end{array}\right\} \Rightarrow T_{1}=T_{2}+B \Rightarrow
$$

Archimedes said: $B=m_{\text {displ. }} \cdot g$

$$
\begin{aligned}
& \Rightarrow T_{1}=T_{2}+m_{\text {displ! }} \cdot g=T_{2}+S_{\text {water }} \cdot V_{\text {obj }} \cdot g= \\
&= T_{2}+S_{\text {water }} \cdot \frac{m}{S_{\text {obj }}} \cdot g=T_{2}+\frac{S_{\text {water }}}{S_{\text {obj }}} \cdot T_{1} \\
& T_{1}=T_{2}+\frac{S_{\text {water }}}{S_{\text {obj }}} \cdot T_{1} \Rightarrow \frac{T_{1}-T_{2}}{T_{1}}=\frac{S_{\text {water }}}{S_{\text {obj }}} \Rightarrow \\
& \Rightarrow S_{\text {obj }}=S_{\text {water }} \cdot \frac{T_{1}}{T_{1}-T_{2}}=1000 \cdot \frac{87.9}{87.9-18.4} \\
& \quad S_{\text {obj }}=1265 \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

Practice Exam \#3

8 pt The figure illustrates the flow of an ideal fluid through a pipe of circular cross section, with diameters of 1 cm and 2 cm and with different elevations. p_{x} is the pressure in the pipe, and v_{x} is the speed of the fluid at locations $\mathrm{x}=$ q, r, s, t, or u.

\rightarrow when you dive, the pressure increases; when you dimb, the pressure decreases:
$\triangleright \mathrm{v}_{\mathrm{q}}$ is $\ldots . .2 \mathrm{v}_{\mathrm{r}}$
6. ${ }^{q} A \bigcirc$ Greater than
$\mathbf{B} \bigcirc$ Less than
$\mathbf{C} \bigcirc$ Equal to
$\triangleright \mathrm{p}_{\mathrm{q}}$ is $\ldots \mathrm{p}_{\mathrm{u}}$
7. ${ }^{\text {A }} \bigcirc$ Greater than
$\mathbf{B} \bigcirc$ Less than
$\mathbf{C} \bigcirc$ Equal to
$\triangleright \mathrm{p}_{\mathrm{t}}$ is $\ldots \mathrm{p}_{\mathrm{r}}$
8. $\mathbf{A} \bigcirc$ Greater than
$\mathrm{B} \bigcirc$ Less than
$\mathbf{C} \bigcirc$ Equal to
$\mathbf{B} \bigcirc$ Less than

$$
1 \quad P_{q}>P_{u}
$$

\rightarrow when you speed up, the pressure decreases; when you slow down, the pressure increases:

$$
P_{t}<P_{r}
$$

Continuity: $v_{1} \cdot A_{1}=v_{2} \cdot A_{2}: v_{1}$ and v_{2} speeds A_{1} and A_{2} : cross sectional areas Warning! $A=\pi r^{2}=\frac{\pi d^{2}}{4}$: cross sectional areas are quadratic in radius or diameter.

$$
\begin{aligned}
v_{q}=v_{s} \text { because } A_{q} & =A_{s} \\
v_{q}>2 v_{r} \text { because } v_{q} & =4 v_{r} \\
\text { since } A_{q} & =\frac{1}{4} A_{r}
\end{aligned}
$$

$3 p t$ What is the sound level of a sound with an intensity of $\mathrm{I}=1.00 \times 10^{-6} \mathrm{~W} / \mathrm{m}^{2}$? Give your answer in dB units.
10. $\mathbf{A} \bigcirc 37.46$

B $\bigcirc 43.83$
$\mathbf{C} \bigcirc 51.28$
D 60.00
E $\bigcirc 70.20$
$\mathbf{F} \bigcirc 82.13$
G $\bigcirc 96.10$
H $\bigcirc 112.43$
$3 p t$ Now the intensity of this sound is increased to a value of 34.0 times of its original intensity. What is the new increased sound level? Give your answer in dB units.
11. $\mathbf{A} \bigcirc 24.70$
$\mathbf{B} \bigcirc 35.82$
$\mathbf{C} \bigcirc 51.94$
DO 75.31
$\mathbf{E} \bigcirc 109.21$
$\mathbf{F} \bigcirc 158.35$
$\mathbf{G} \bigcirc 229.61$
$\mathbf{H} \bigcirc 332.93$
Intensity: $I=1 \cdot 10^{-6} \mathrm{w} / \mathrm{m}^{2}$
Sound level: $10 \cdot \log \left(\frac{I}{I_{0}}\right)=10 \log \left(\frac{10^{-6}}{10^{-12}}\right)=$
$=10 \cdot \log \left(10^{-6} \cdot 10^{12}\right)=10 \log 10^{6}=10 \cdot 6=60 \mathrm{~dB}$
when the intensity is increased by a factor of 34.0, the sound level changes
to : $10 \log \left(34.0 \cdot \frac{I}{I_{0}}\right)=10 \log 34+10 \log \left(\frac{T}{I_{0}}\right)=$
$=15.31+60=75.31 \mathrm{~dB}$
$4 p t$ A truck horn emits a sound with a frequency of 200 Hz . The truck is moving on a straight road with a constant speed. If a person standing on the side of the road hears the horn at a frequency of 225 Hz , then what is the speed of the truck? Use $340 \mathrm{~m} / \mathrm{s}$ for the speed of the sound.

$$
(\text { in mos })
$$

```
12.}\mathbf{A}\bigcirc3.78\times1\mp@subsup{0}{}{1
    B}4.27\times1\mp@subsup{0}{}{1
\(\mathbf{C} \bigcirc 4.82 \times 10^{1}\)
D \(5.45 \times 10^{1}\)
\(6.96 \times 10^{1}\)
G \(\bigcirc 7.87 \times 10^{1}\)
\(\mathbf{H} \bigcirc 8.89 \times 10^{1}\)
```

Doppler-effect:

$$
f_{\sigma}=f_{s} \cdot \frac{c \pm v_{\sigma}}{c \mp v_{s}}
$$

$c=340 \mathrm{~m} / \mathrm{s}$: speed of sound
$f_{s}=200 \mathrm{~Hz}$: source frequency
$f_{\sigma}=225 \mathrm{~Hz}$: observed frequency
$v_{\sigma}=0 \mathrm{~m} / \mathrm{s}$: speed of the obs er
$v_{s}=$? : speed of the source
Since the shift is UP:

$$
\begin{aligned}
& f_{\sigma}=f_{s} \frac{c}{c-v_{s}} \\
& f_{\sigma} c-f_{\sigma} v_{s}=f_{s} c \\
& f_{\sigma} c-f_{s} c=f_{\sigma} v_{s} \\
& c \cdot \frac{f_{\sigma}-f_{s}}{f_{\sigma}}=v_{s} \\
& v_{s}=340 \cdot \frac{225-200}{225}=340 \cdot \frac{25}{225}=\frac{340}{9} \\
& \left.v_{s}=37.8 \frac{\mathrm{~m}}{\mathrm{~s}}=136 \frac{\mathrm{~km}}{\mathrm{~h}}=84.5 \frac{\mathrm{mi}}{\mathrm{~h}}\right\} \text { tao }
\end{aligned}
$$

3 pt An organ pipe is 1.70 m long and it is open at one end and closed at the other end. What are the frequencies of the lowest three harmonics produced by this pipe? The speed of sound is $340 \mathrm{~m} / \mathrm{s}$. Only one answer is correct.
13.A $\bigcirc 200 \mathrm{~Hz}, 300 \mathrm{~Hz}, 400 \mathrm{~Hz}$

B $\bigcirc 50 \mathrm{~Hz}, 100 \mathrm{~Hz}, 150 \mathrm{~Hz}$
C $\bigcirc 100 \mathrm{~Hz}, 300 \mathrm{~Hz}, 500 \mathrm{~Hz}$
D $\bigcirc 50 \mathrm{~Hz}, 100 \mathrm{~Hz}, 200 \mathrm{~Hz}$
E $\bigcirc 100 \mathrm{~Hz}, 200 \mathrm{~Hz}, 300 \mathrm{~Hz}$

$$
c=340 \mathrm{~m} / \mathrm{s}
$$

Ff $200 \mathrm{~Hz}, 600 \mathrm{~Hz}, 1000 \mathrm{~Hz}$
G $\bigcirc 50 \mathrm{~Hz}, 150 \mathrm{~Hz}, 250 \mathrm{~Hz}$
H $\bigcirc 200 \mathrm{~Hz}, 400 \mathrm{~Hz}, 600 \mathrm{~Hz}$
An open-closed pipe can hold $\frac{1}{4}, \frac{3}{4}, \frac{5}{4}, \frac{7}{4}, \frac{9}{4} \ldots$ wavelengths.

lowest mode:

$$
L=\frac{1}{4} \lambda
$$

$$
\begin{gathered}
4 L=\lambda \\
c=\lambda f \Rightarrow f=\frac{c}{\lambda}=\frac{c}{4 L}=\frac{340}{4 \cdot 1.7}=50 \mathrm{~Hz}
\end{gathered}
$$

$f_{1}=50 \mathrm{~Hz}$: fundamental frequency
The possible frequencies are:

$$
f_{1} ; 3 f_{1} ; 5 f_{1} ; 7 f_{1} ; 9 f_{1} ; \ldots
$$

50 Hz ; 150 Hz ; 250 Hz ; 350 Hz ; 450 Hz

Practice Exam \#3

4 pt The height of the Eiffel tower is 321 m during the Summer when the temperature is $25.3{ }^{\circ} \mathrm{C}$. What is the magnitude of the change in the height of the tower, when the temperature cools down to $-12.0^{\circ} \mathrm{C}$ during the Winter? The coefficient of linear expansion of the tower's material is $1.18 \times 10^{-5} 1 / \mathrm{C}^{\circ}$. (in cm)
14. $\mathbf{A} \bigcirc 1.06 \times 10^{1}$

B 1.41×10^{1}
$\mathbf{C} \bigcirc 1.88 \times 10^{1}$
D 2.50×10^{1}
E $\bigcirc 3.32 \times 10^{1}$
F〇 4.42×10^{1}
$\mathbf{G} \bigcirc 5.88 \times 10^{1}$
$\mathbf{H} \bigcirc 7.82 \times 10^{1}$
Heat expansion/contraction:

$$
\begin{aligned}
\Delta l & =\alpha \cdot l_{0} \cdot \Delta T= \\
& =1.18 \cdot 10^{-5} \cdot 321 \cdot(25.3-(-12.0))= \\
& =0.141 \mathrm{~m}=14.1 \mathrm{~cm}
\end{aligned}
$$

Practice Exam \#3

3 pt What is the pressure of 1.07 moles of Nitrogen gas in a 4.71 liter container, if the temperature of the gas is 40.2 ${ }^{\circ} \mathrm{C}$?
(in atm)
15. $\mathbf{A} \bigcirc 1.32$
$\mathrm{B} \bigcirc 1.92$
$\mathbf{C} \bigcirc 2.78$
$\mathbf{D} \bigcirc 4.03$
Ff 8.47
$\mathbf{G} \bigcirc 12.28$
$\mathbf{H} \bigcirc 17.80$
Ideal gas law:

$$
\begin{aligned}
& P V=n R T \\
& P=\frac{n R T}{V} \\
& R=8.31 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}: \text { Regnault constant } \\
& T=40.2^{\circ} \mathrm{C} \cong 313.2 \mathrm{~K} \\
& \begin{aligned}
& V=4.71 \mathrm{l}=0.00471 \mathrm{~m}^{3} \\
& n=1.07 \mathrm{~mol} \\
& \begin{aligned}
P= & \frac{1.07 \cdot 8.31 \cdot 313.2}{0.00471}
\end{aligned} \\
&=5.91 \cdot 10^{5} \mathrm{~Pa} \cong \\
&(1 \mathrm{~atm}=101.300 \mathrm{~Pa})
\end{aligned}
\end{aligned}
$$

4 pt A 24.5 l gas bottle contains 9.87×10^{23} Radon molecules at a temperature of 312 K . What is the thermal energy of the gas? (You might need to know Boltzmann's constant: $\mathrm{k}_{\mathrm{B}}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$.) (in J)
16. $\mathbf{A} \bigcirc 6.38 \times 10^{3}$

B 9.25×10^{3}
$\mathbf{C} \bigcirc 1.34 \times 10^{4}$
D 1.94×10^{4}
E $\bigcirc 2.82 \times 10^{4}$
F
4.09×10^{4}
$\mathbf{G} \bigcirc 5.93 \times 10^{4}$
$\mathbf{H} \bigcirc 8.59 \times 10^{4}$
$E_{t h}=\frac{f}{2} N k_{B} T$
Rn: Radon: noble gas: single atom molecules: $f=3$: three translations only.
$E_{t h}=\frac{3}{2} \cdot 9.87 \cdot 10^{23} \cdot 1.38 \cdot 10^{-23} \cdot 312$
$E_{t h}=1.5 \cdot 9.87 \cdot 1.38 \cdot 312$
$E_{t h}=6374 \mathrm{~J}$
The volume of the gas was not needed!

Practice Exam \#3
$3 p t$ The diameter of the Hydrogen atom is almost exactly one angstrom which is 10^{-10} meter. How many Hydrogen atoms do we need to place next to each-other side by side to form a one millimeter long chain?
17.A \bigcirc one hundred
$\mathbf{B} \bigcirc$ one thousand
$\mathrm{C} \bigcirc$ one million
D \bigcirc ten million
E \bigcirc hundred million
$\mathbf{F} \bigcirc$ one billion
$\mathbf{G} \bigcirc$ one trillion
$\mathbf{H} \bigcirc 6 \times 10^{23}$

