nagytibo@msu

Nagy,

Tibor

Keep this exam **CLOSED** until advised by the instructor.

 $50\ {\rm minute}\ {\rm long}\ {\rm closed}\ {\rm book}\ {\rm exam}.$

Fill out the bubble sheet: last name, first initial, **student number (PID)**. Leave the section, code, form and signature areas empty.

Two two-sided handwritten 8.5 by 11 help sheets are allowed.

When done, hand in your test and your bubble sheet.

Thank you and good luck!

Posssibly useful constant:

• $g = 9.81 \text{ m/s}^2$

Posssibly useful Moments of Inertia:

- Solid homogeneous cylinder: $I_{CM} = (1/2)MR^2$
- Solid homogeneous sphere: $I_{CM} = (2/5)MR^2$
- Thin spherical shell: $I_{CM} = (2/3)MR^2$
- Thin uniform rod, axis perpendicular to length: $I_{\rm CM}=(1/12){\rm ML}^2$
- Thin uniform rod around end, axis perpendicular to length: I $_{\rm end}=(1/3){\rm ML^2}$

Please, sit in row G.

1 pt Are you sitting in the seat assigned?

 $1.A\bigcirc$ Yes, I am.

1

3 pt There are 149 steps between the ground floor and the sixth floor in a building. Each step is 17.1 cm tall. It takes 2 minutes and 33 seconds for a person with a mass of 68.8 kg to walk all the way up. How much work did the person do? *(in J)*

2.	\mathbf{A} $\bigcirc 1.28 \times 10^3$	$\mathbf{B}\bigcirc 1.85 \times 10^3$	$\mathbf{C}\bigcirc~2.68 imes10^3$
	$\mathbf{D}\bigcirc 3.89 \times 10^3$	$\mathbf{E}\bigcirc 5.64 \times 10^3$	\mathbf{F} \otimes 8.18 \times 10 ³
	$\mathbf{G}\bigcirc 1.19 \times 10^4$	$\mathbf{H}\bigcirc 1.72 \times 10^4$	

4 pt By what percent does the braking distance of a car in-
crease, when the speed of the car increases by 18.9 percent?
Braking distance is the distance a car travels from the point
when the brakes are applied to when the car comes to a com-
plete stop.

5.	$\mathbf{A}\bigcirc$ 7.47	B 〇 9.94	$\mathbf{C}\bigcirc 1.32 \times 10^1$
	$\mathbf{D}\bigcirc 1.76 \times 10^1$	\mathbf{E} $\bigcirc 2.34 \times 10^1$	$\mathbf{F}\bigcirc 3.11 \times 10^1$
	$\mathbf{G}\bigcirc 4.14 \times 10^1$	${\bf H}\bigcirc~5.50\times10^{1}$	

3 pt What was the average power performed by the person during the walk?

(in W)

3.	$\mathbf{A}\bigcirc 3.74 \times 10^1$	\mathbf{B} \bigcirc 4.38 $\times 10^1$	$\mathbf{C}\bigcirc~5.13 imes10^1$
	$\mathbf{D}\bigcirc 6.00 \times 10^1$	\mathbf{E} 7.02 × 10 ¹	$\mathbf{F}\bigcirc 8.21 \times 10^1$
	$\mathbf{G}\bigcirc 9.61 \times 10^1$	$\mathbf{H}\bigcirc~1.12\times10^2$	

 $\lfloor 4 \ pt \rfloor$ An airplane is flying with a speed of 247 km/h at a height of 4000 m above the ground. A parachutist whose mass is 93.4 kg, jumps out of the airplane, opens the parachute and then lands on the ground with a speed of 3.30 m/s. How much energy was dissipated on the parachute by the air friction? *(in* MJ)

4.	\mathbf{A} \bigcirc 3.04	$\mathbf{B}\bigcirc 3.44$	$\mathbf{C}\bigcirc 3.88$	\mathbf{D} \bigcirc 4.39
	\mathbf{E} 4.96	$\mathbf{F}\bigcirc 5.60$	$\mathbf{G}\bigcirc~6.33$	$H\bigcirc$ 7.16

After it is pushed very slowly over the edge, it starts to roll down. At the bottom it hits another cart originally at rest with a mass of $m_2 = 17.0$ t. The bumper mechanism locks the two carts together. What is the final common speed of the two carts? (Neglect losses due to rolling friction of the carts. The letter t stands for metric ton in the SI system.) (in m/s)

6.	$\mathbf{A}\bigcirc$ 6.71	$\mathbf{B}\bigcirc 8.92$	$\mathbf{C}\bigcirc 1.19 \times 10^1$
	$\mathbf{D}\bigcirc 1.58 \times 10^1$	\mathbf{E} $\bigcirc 2.10 \times 10^1$	$\mathbf{F}\bigcirc~2.79 imes10^{1}$
	$\mathbf{G}\bigcirc 3.71 \times 10^1$	$\mathbf{H}\bigcirc 4.94 \times 10^{1}$	

The graph shows the x-displacement as a function of time for a particular object undergoing simple harmonic motion.

This function can be described by the following formula: $x(t) = A\cos(\omega t)$, where x and A are measured in meters, t is measured in seconds, ω is measured in rad/s.

4 *pt* Using the graph determine the angular frequency ω of the oscillation.

(in rad/s)

7.	\mathbf{A} $\bigcirc 2.45 \times 10^{-1}$	$\mathbf{B}\bigcirc~3.55\times10^{-1}$	$\mathbf{C}\bigcirc~5.15\times10^{-1}$
	$\mathbf{D}\bigcirc~7.47 \times 10^{-1}$	\mathbf{E} 1.08	\mathbf{F} 1.57
	$\mathbf{G}\bigcirc 2.28$	H 3.30	

4 *pt* An object with a mass of m = 1.27 kg connected to a spring oscillates on a horizontal frictionless surface as shown in the figure.

The equation of the motion of the mass is given by $x = 0.319 \cos(1.01t)$

where the position x is measured in meters, the time t is measured in seconds. Determine the total mechanical energy of the mass spring oscillator.

(in J)

8. A $\bigcirc 6.59 \times 10^{-2}$ B $\bigcirc 8.77 \times 10^{-2}$ C $\bigcirc 1.17 \times 10^{-1}$ D $\bigcirc 1.55 \times 10^{-1}$ E $\bigcirc 2.06 \times 10^{-1}$ F $\bigcirc 2.74 \times 10^{-1}$ G $\bigcirc 3.65 \times 10^{-1}$ H $\bigcirc 4.85 \times 10^{-1}$ 4 *pt* An extended body (not shown in the figure) has its center of mass (CM) at the origin of the reference frame. In the case below give the direction for the torque τ with respect to the CM on the body due to force **F** acting on the body at a location indicated by the vector **r**.

4 pt Three small objects are located in the x-y plane as shown in the figure. All three objects have the same mass, m = 1.77 kg.

What is the moment of inertia of this set of objects with respect to the axis perpendicular to the the x-y plane passing through location x = 3.00 m and y = 3.00 m? (The objects are small in size, their moments of inertia about their own centers of mass are negligibly small.)

(in kg*m^2)

10.	$\mathbf{A}\bigcirc 6.62 \times 10^1$	$\mathbf{B}\bigcirc 7.49 \times 10^1$	$\mathbf{C}\bigcirc 8.46 \times 10^1$
	\mathbf{D} 9.56 × 10 ¹	\mathbf{E} 1.08×10^2	$\mathbf{F}\bigcirc 1.22 \times 10^2$
	$\mathbf{G}\bigcirc 1.38 \times 10^2$	$\mathbf{H}\bigcirc 1.56 \times 10^2$	

4 pt A solid, homogeneous cylinder with of mass of M = 2.75 kg and a radius of R = 18.3 cm is resting at the top of an incline as shown in the figure.

The height of the incline is h = 1.49 m, and the angle of the incline is $\theta = 14.3^{\circ}$. The cylinder is rolled over the edge very slowly. Then it rolls down to the bottom of the incline without slipping. What is the final speed of the cylinder? (*in* m/s)

11.	$\mathbf{A}\bigcirc 1.45$	$\mathbf{B}\bigcirc 1.81$	$\mathbf{C}\bigcirc~2.26$	$\mathbf{D}\bigcirc 2.83$
	E 〇 3.53	\mathbf{F} 4.41	$\mathbf{G}\bigcirc 5.52$	H 〇 6.90

 $12.A\bigcirc$ up to the sky

- $\mathbf{B}\bigcirc$ forward
- \mathbf{C} to your right
- $\mathbf{D}\bigcirc$ down to the ground
- $E\bigcirc$ backward
- $\mathbf{F}\bigcirc$ The velocity is zero.
- $\mathbf{G}\bigcirc$ to your left

2 pt What is the direction of the angular velocity vector of your wheels?

- $13.A\bigcirc \text{ backward}$
 - \mathbf{B} to your left
 - \mathbf{C} to your right
 - \mathbf{D} () forward
 - \mathbf{E} down to the ground
 - \mathbf{F} up to the sky
 - $\mathbf{G}\bigcirc$ The angular velocity is zero.

A crate with a mass of M = 72.5 kg is suspended by a rope from the endpoint of a uniform boom. The boom has a mass of m = 126 kg and a length of l = 8.02 m. The midpoint of the boom is supported by another rope which is horizontal and is attached to the wall as shown in the figure.

3 *pt* The boom makes an angle of $\theta = 51.6^{\circ}$ with the vertical wall. Calculate the tension in the vertical rope. (*in* N)

14.	\mathbf{A} \bigcirc 7.11 \times 10 ²	$\mathbf{B}\bigcirc~8.89 imes10^2$	$\mathbf{C}\bigcirc 1.11 \times 10^3$
	$\mathbf{D}\bigcirc 1.39 \times 10^3$	\mathbf{E} \bigcirc 1.74×10^3	\mathbf{F} $\bigcirc 2.17 \times 10^3$
	$\mathbf{G}\bigcirc 2.71 \times 10^3$	$\mathbf{H}\bigcirc 3.39 \times 10^3$	

$3 pt$ What is the tension in the horizontal rope? $(in \mathbb{N})$				
15.	$\mathbf{A}\bigcirc~5.23 imes10^2$	$\mathbf{B}\bigcirc~7.59 imes10^2$	$\mathbf{C}\bigcirc 1.10 \times 10^3$	
	\mathbf{D} $\bigcirc 1.60 \times 10^3$	$\mathbf{E}\bigcirc~2.31 imes10^3$	$\mathbf{F}\bigcirc 3.35 \times 10^3$	
	$\mathbf{G}\bigcirc 4.86 \times 10^3$	$\mathbf{H}\bigcirc~7.05\times10^3$		

Printed from LON-CAPA©MSU Licensed under GNU General Public License