Nagy,

Please, sit in row G.

Tibor

Keep this exam CLOSED until advised by the instructor.
50 minute long closed book exam.
Fill out the bubble sheet: last name, first initial, student number (PID). Leave the section, code, form and signature areas empty.

Two two-sided handwritten 8.5 by 11 help sheets are allowed.
When done, hand in your test and your bubble sheet.
Thank you and good luck!
Posssibly useful constant:

- $\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2}$

Posssibly useful Moments of Inertia:

- Solid homogeneous cylinder: $\mathrm{I}_{\mathrm{CM}}=(1 / 2) \mathrm{MR}^{2}$
- Solid homogeneous sphere: $\mathrm{I}_{\mathrm{CM}}=(2 / 5) \mathrm{MR}^{2}$
- Thin spherical shell: $\mathrm{I}_{\mathrm{CM}}=(2 / 3) \mathrm{MR}^{2}$
- Thin uniform rod, axis perpendicular to length: $\mathrm{I}_{\mathrm{CM}}=$ $(1 / 12) \mathrm{ML}^{2}$
- Thin uniform rod around end, axis perpendicular to length: $\mathrm{I}_{\text {end }}=(1 / 3) \mathrm{ML}^{2}$
$3 p t$ There are 149 steps between the ground floor and the sixth floor in a building. Each step is 17.1 cm tall. It takes 2 minutes and 33 seconds for a person with a mass of 68.8 kg to walk all the way up. How much work did the person do? (in J)

$$
\begin{array}{llll}
\text { 2. } & \mathbf{A} \bigcirc 1.28 \times 10^{3} & \mathbf{B} \bigcirc 1.85 \times 10^{3} & \mathbf{C} \bigcirc 2.68 \times 10^{3} \\
\mathbf{D} \bigcirc 3.89 \times 10^{3} & \mathbf{E} \bigcirc 5.64 \times 10^{3} & \mathbf{F} \bigcirc 8.18 \times 10^{3} \\
\mathbf{G} \bigcirc 1.19 \times 10^{4} & \mathbf{H} \bigcirc 1.72 \times 10^{4} &
\end{array}
$$

3 pt What was the average power performed by the person during the walk?
(in W)
3. $\quad \mathbf{A} \bigcirc 3.74 \times 10^{1}$
$\mathbf{B} \bigcirc 4.38 \times 10^{1}$
$\mathbf{C} 5.13 \times 10^{1}$
D 6.00×10^{1}
$\mathbf{E} \bigcirc 7.02 \times 10^{1}$
$\mathbf{F} \bigcirc 8.21 \times 10^{1}$
G $\bigcirc 9.61 \times 10^{1}$
$\mathbf{H} \bigcirc 1.12 \times 10^{2}$

4 pt An airplane is flying with a speed of $247 \mathrm{~km} / \mathrm{h}$ at a height of 4000 m above the ground. A parachutist whose mass is 93.4 kg , jumps out of the airplane, opens the parachute and then lands on the ground with a speed of $3.30 \mathrm{~m} / \mathrm{s}$. How much energy was dissipated on the parachute by the air friction? (in MJ)
4. $\quad \mathbf{A} \bigcirc 3.04$
$\mathbf{B} \bigcirc 3.44$
$\mathbf{C} \bigcirc 3.88$
$\mathbf{D} \bigcirc 4.39$
$\mathbf{E} \bigcirc 4.96$
$\mathbf{F} \bigcirc 5.60$
$\mathbf{G} \bigcirc 6.33$
$\mathbf{H} \bigcirc 7.16$
$4 p t$ By what percent does the braking distance of a car increase, when the speed of the car increases by 18.9 percent? Braking distance is the distance a car travels from the point when the brakes are applied to when the car comes to a complete stop.
5. $\quad \mathbf{A} \bigcirc 7.47$
B $\bigcirc 9.94$
$\mathbf{C} 1.32 \times 10^{1}$
$\mathbf{D} \bigcirc 1.76 \times 10^{1} \quad \mathbf{E} \bigcirc 2.34 \times 10^{1}$
$\mathbf{F} \bigcirc 3.11 \times 10^{1}$
$\mathbf{G} \bigcirc 4.14 \times 10^{1} \quad \mathbf{H} \bigcirc 5.50 \times 10^{1}$
$5 p t$ A railroad cart with a mass of $\mathrm{m}_{1}=13.4 \mathrm{t}$ is at rest at the top of an $\mathrm{h}=11.8 \mathrm{~m}$ high hump yard hill.

After it is pushed very slowly over the edge, it starts to roll down. At the bottom it hits another cart originally at rest with a mass of $\mathrm{m}_{2}=17.0 \mathrm{t}$. The bumper mechanism locks the two carts together. What is the final common speed of the two carts? (Neglect losses due to rolling friction of the carts. The letter t stands for metric ton in the SI system.) (in m / s)
6. $\mathbf{A} \bigcirc 6.71$
$\mathbf{B} \bigcirc 8.92$
$\mathbf{C} 1.19 \times 10^{1}$
D 1.58×10^{1}
E $\bigcirc 2.10 \times 10^{1}$
$\mathbf{F} \bigcirc 2.79 \times 10^{1}$
$\mathbf{G} \bigcirc 3.71 \times 10^{1}$
$\mathbf{H} \bigcirc 4.94 \times 10^{1}$

The graph shows the x-displacement as a function of time for a particular object undergoing simple harmonic motion.

This function can be described by the following formula: $\mathrm{x}(\mathrm{t})=\mathrm{A} \cos (\omega \mathrm{t})$, where x and A are measured in meters, t is measured in seconds, ω is measured in $\mathrm{rad} / \mathrm{s}$.
$4 p t$ Using the graph determine the angular frequency ω of the oscillation.
(in rad/s)
7. $\mathbf{A} \bigcirc 2.45 \times 10^{-1} \quad \mathbf{B} \bigcirc 3.55 \times 10^{-1} \quad \mathbf{C} \bigcirc 5.15 \times 10^{-1}$
D 7.47×10^{-1}
$\mathbf{E} \bigcirc 1.08$
$\mathbf{F} \bigcirc 1.57$
G〇 2.28
$\mathbf{H} \bigcirc 3.30$
$4 p t$ An object with a mass of $m=1.27 \mathrm{~kg}$ connected to a spring oscillates on a horizontal frictionless surface as shown in the figure.

The equation of the motion of the mass is given by $x=0.319 \cos (1.01 t)$
where the position x is measured in meters, the time t is measured in seconds. Determine the total mechanical energy of the mass spring oscillator.
(in J)

$$
\begin{array}{lllll}
\text { 8. } & \mathbf{A} \bigcirc 6.59 \times 10^{-2} & \mathbf{B} \bigcirc 8.77 \times 10^{-2} & \mathbf{C} \bigcirc 1.17 \times 10^{-1} \\
\mathbf{D} \bigcirc 1.55 \times 10^{-1} & \mathbf{E} \bigcirc 2.06 \times 10^{-1} & \mathbf{F} \bigcirc 2.74 \times 10^{-1} \\
\mathbf{G} \bigcirc 3.65 \times 10^{-1} & \mathbf{H} \bigcirc 4.85 \times 10^{-1} & &
\end{array}
$$

4 pt An extended body (not shown in the figure) has its center of mass (CM) at the origin of the reference frame. In the case below give the direction for the torque τ with respect to the CM on the body due to force \mathbf{F} acting on the body at a location indicated by the vector \mathbf{r}.

$4 p t$ Three small objects are located in the x-y plane as shown in the figure. All three objects have the same mass, m $=1.77 \mathrm{~kg}$.

What is the moment of inertia of this set of objects with respect to the axis perpendicular to the the $x-y$ plane passing through location $\mathrm{x}=3.00 \mathrm{~m}$ and $\mathrm{y}=3.00 \mathrm{~m}$? (The objects are small in size, their moments of inertia about their own centers of mass are negligibly small.)
(in $\mathrm{kg} * \mathrm{~m} \sim 2$)
10.
$\mathbf{A} \bigcirc 6.62 \times 10^{1}$
$\mathbf{D} \bigcirc 9.56 \times 10^{1}$
$\mathbf{G} \bigcirc 1.38 \times 10^{2}$
$\mathbf{B} \bigcirc 7.49 \times 10^{1}$
$\mathbf{C} \bigcirc 8.46 \times 10^{1}$
$\mathrm{E} \bigcirc 1.08 \times 10^{2}$
F $\bigcirc 1.22 \times 10^{2}$

2 pt You ride your bicycle in the forward direction on a straight horizontal road. What is the direction of the velocity vector of your bicycle?
12.A \bigcirc up to the sky
$\mathbf{B} \bigcirc$ forward
$\mathbf{C} \bigcirc$ to your right
$\mathbf{D} \bigcirc$ down to the ground
$\mathbf{E} \bigcirc$ backward
$\mathbf{F} \bigcirc$ The velocity is zero.
$\mathbf{G} \bigcirc$ to your left
$2 p t$ What is the direction of the angular velocity vector of your wheels?
13.A \bigcirc backward
$\mathbf{B} \bigcirc$ to your left
$\mathbf{C} \bigcirc$ to your right
D forward
$\mathbf{E} \bigcirc$ down to the ground
$\mathbf{F} \bigcirc$ up to the sky
$\mathbf{G} \bigcirc$ The angular velocity is zero.

A crate with a mass of $\mathrm{M}=72.5 \mathrm{~kg}$ is suspended by a rope from the endpoint of a uniform boom. The boom has a mass of $\mathrm{m}=126 \mathrm{~kg}$ and a length of $\mathrm{l}=8.02 \mathrm{~m}$. The midpoint of the boom is supported by another rope which is horizontal and is attached to the wall as shown in the figure.

$3 p t$ The boom makes an angle of $\theta=51.6^{\circ}$ with the vertical wall. Calculate the tension in the vertical rope.
(in N)

$$
\begin{array}{llll}
\text { 14. } & \mathbf{A} \bigcirc 7.11 \times 10^{2} & \mathbf{B} \bigcirc 8.89 \times 10^{2} & \mathbf{C} \bigcirc 1.11 \times 10^{3} \\
\mathbf{D} \bigcirc 1.39 \times 10^{3} & \mathbf{E} \bigcirc 1.74 \times 10^{3} & \mathbf{F} \bigcirc 2.17 \times 10^{3} \\
\mathbf{G} \bigcirc 2.71 \times 10^{3} & \mathbf{H} \bigcirc 3.39 \times 10^{3} &
\end{array}
$$

$3 p t$ What is the tension in the horizontal rope?
(in N)

15.	$\mathbf{A} \bigcirc 5.23 \times 10^{2}$	$\mathbf{B} \bigcirc 7.59 \times 10^{2}$	$\mathbf{C} \bigcirc 1.10 \times 10^{3}$
$\mathbf{D} \bigcirc 1.60 \times 10^{3}$	$\mathbf{E} \bigcirc 2.31 \times 10^{3}$	$\mathbf{F} \bigcirc 3.35 \times 10^{3}$	
$\mathbf{G} \bigcirc 4.86 \times 10^{3}$	$\mathbf{H} \bigcirc 7.05 \times 10^{3}$		

