Nagy,

Tibor

Keep this exam CLOSED until advised by the instructor.

50 minute long closed book exam.
Fill out the bubble sheet: last name, first initial, student number (PID). Leave the section, code, form and signature areas empty.

Two two-sided handwritten 8.5 by 11 help sheets are allowed.
When done, hand in your test and your bubble sheet.
Thank you and good luck!
Posssibly useful constant:

- $\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2}$

Posssibly useful Moments of Inertia:

- Solid homogeneous cylinder: $\mathrm{I}_{\mathrm{CM}}=(1 / 2) \mathrm{MR}^{2}$
- Solid homogeneous sphere: $\mathrm{I}_{\mathrm{CM}}=(2 / 5) \mathrm{MR}^{2}$
- Thin spherical shell: $\mathrm{I}_{\mathrm{CM}}=(2 / 3) \mathrm{MR}^{2}$
- Thin uniform rod, axis perpendicular to length: $\mathrm{I}_{\mathrm{CM}}=(1 / 12) \mathrm{ML}^{2}$
- Thin uniform rod around end, axis perpendicular to length: $\mathrm{I}_{\mathrm{end}}=(1 / 3) \mathrm{ML}^{2}$

nagytibo@msu

Please, sit in row G.

1 pt Are you sitting in the seat assigned?
1.A \bigcirc Yes, I am.

3 pt There are 149 steps between the ground floor and the sixth floor in a building. Each step is 17.1 cm tall. It takes 2 minutes and 33 seconds for a person with a mass of 68.8 kg to walk all the way up. How much work did the person do?
(in J)
2. $\mathbf{A} \bigcirc 1.28 \times 10^{3}$

B
B
1.85×10^{3}
$\mathbf{C} \bigcirc 2.68 \times 10^{3}$
D 3.89×10^{3}
$\mathbf{E} \bigcirc 5.64 \times 10^{3}$
F
8.18×10^{3}
G
1.19×10^{4}
HO 1.72×10^{4}

3 pt What was the average power performed by the person during the walk?
(in W)
3.

A 3.74×10^{1}
B $\bigcirc 4.38 \times 10^{1}$
$\mathbf{C} \bigcirc 5.13 \times 10^{1}$
D $6.00 \times 10^{1}$$7.02 \times 10^{1}$
F
8.21×10^{1}
G
9.61×10^{1}
H 1.12×10^{2}
Number of steps: $n=149$.
Height of one step: $h=17.1 \mathrm{~cm}=0.171 \mathrm{~m}$.
Total height: $H=n \cdot h$
Mass of the person: $m=68.8 \mathrm{~kg}$
Work done by the person:
$W=m g \cdot H=m g \cdot n h \cong 17,200 \mathrm{~J}$
Time of the walk:

$$
\Delta t=2 \min 33 \mathrm{sec}=153 \mathrm{~s}
$$

Power of the person:

$$
P=\frac{W}{\Delta t}=\frac{17.200}{153}=112 W
$$

4 pt An airplane is flying with a speed of $247 \mathrm{~km} / \mathrm{h}$ at a height of 4000 m above the ground. A parachutist whose mass is 93.4 kg , jumps out of the airplane, opens the parachute and then lands on the ground with a speed of 3.30 m / s. How much energy was dissipated on the parachute by the air friction? (in MJ)
4.
$\mathbf{A} \bigcirc 3.04$
By 3.44

Energy balance:

$$
\begin{aligned}
& K E_{i}+P E_{i}=K E_{f}+\Delta E_{t h} \\
& \frac{1}{2} m v_{i}^{2}+m g h-\frac{1}{2} m v_{f}^{2}=\Delta E_{t h} \\
& \Delta E_{t h}=\frac{1}{2} m\left(v_{i}^{2}-v_{f}^{2}\right)+m g h= \\
& =\frac{1}{2} \cdot 93.4 \cdot\left(\left(\frac{247}{3.6}\right)^{2}-3.3^{2}\right)+93.4 \cdot 9.81 \cdot 4000= \\
& =3.88 \mathrm{MJ}
\end{aligned}
$$

Practice Exam \#2

4 pt By what percent does the braking distance of a car increase, when the speed of the car increases by 18.9 percent? Braking distance is the distance a car travels from the point when the brakes are applied to when the car comes to a complete stop.
5.

A
7.47
$\mathbf{B} \bigcirc 9.94$
$\mathbf{F} \bigcirc 3.11 \times 10^{1}$
$\mathbf{C} \bigcirc 1.32 \times 10^{1}$
D 1.76×10^{1}
$\mathbf{E} \bigcirc 2.34 \times 10^{1}$
G $\bigcirc 4.14 \times 10^{1}$
$\mathbf{H} \bigcirc 5.50 \times 10^{1}$
Braking:

$$
\begin{gathered}
K E_{i}+w_{\text {diss }}=0 \\
K E_{i}=-w_{\text {diss }} \\
\frac{1}{2} m v_{i}^{2}=F \cdot d \\
v_{i}^{2} \propto d
\end{gathered}
$$

18.9% increase \rightarrow increase by a
factor of 1.189

$$
1.189^{2} \cong 1.414 \rightarrow 41.4 \% \text { increase }
$$

5 pt A railroad cart with a mass of $\mathrm{m}_{1}=13.4 \mathrm{t}$ is at rest at the top of an $\mathrm{h}=11.8 \mathrm{~m}$ high hump yard hill.

After it is pushed very slowly over the edge, it starts to roll down. At the bottom it hits another cart originally at rest with a mass of $\mathrm{m}_{2}=17.0 \mathrm{t}$. The bumper mechanism locks the two carts together. What is the final common speed of the two carts? (Neglect losses due to rolling friction of the carts. The letter t stands for metric ton in the SI system.) (in m / s)
6. $\mathbf{A} \bigcirc 6.71$

By 8.92
F $\bigcirc 2.79 \times 10^{1}$
$\mathbf{C} \bigcirc 1.19 \times 10^{1}$
D 1.58×10^{1}
$\mathbf{E} \bigcirc 2.10 \times 10^{1}$
G \bigcirc
3.71×10^{1}
$\mathbf{H} \bigcirc 4.94 \times 10^{1}$
Cart m_{1} rolls down: conservation
of energy: $m_{1} g h=\frac{1}{2} m_{1} v_{1}^{2}$

$$
\sqrt{2 g h}=v_{1}
$$

Collision: conservation of momentum:

$$
\begin{aligned}
& m_{1} \cdot v_{1}+m_{2} \cdot 0=\left(m_{1}+m_{2}\right) \cdot v_{f} \\
& \frac{m_{1}}{m_{1}+m_{2}} \cdot v_{1}=v_{f} \\
& \frac{m_{1}}{m_{1}+m_{2}} \cdot \sqrt{2 g h}=v_{f} \\
& v_{f}=\frac{13.4}{13.4+17.0} \cdot \sqrt{2 \cdot 9.81 \cdot 11.8} \\
& v_{f}=6.71 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Practice Exam \#2

The graph shows the x-displacement as a function of time for a particular object undergoing simple harmonic motion.

This function can be described by the following formula:
$\mathrm{x}(\mathrm{t})=\mathrm{A} \cos (\omega \mathrm{t})$, where x and A are measured in meters, t is measured in seconds, ω is measured in rad/s.

4 pt Using the graph determine the angular frequency ω of the oscillation.
(in rad/s)
7. $\mathrm{A} \bigcirc$
2.45×10^{-1}
B 3.55×10^{-1}
$\mathbf{C} \bigcirc$
5.15×10^{-1}
D 7.47×10^{-1}
E \bigcirc
1.08

F○ 1.57
G $\bigcirc 2.28$
$\mathbf{H} \bigcirc 3.30$
Angular frequency:

$$
\omega=\frac{2 \pi}{T}=\frac{6.28}{4}=1.57 \frac{\mathrm{rad}}{\mathrm{~s}}
$$

$4 p t$ An object with a mass of $m=1.27 \mathrm{~kg}$ connected to a spring oscillates on a horizontal frictionless surface as
Simple harmonic oscill:
\square
Cumbria- ${ }^{m}$

$$
x(t)=A \cdot \cos (\omega t)
$$

The equation of the motion of the mass is given by
$x=0.319 \cos (1.01 t)$
where the
where the position x is measured in meters, the time t is measured in seconds. Determine the total mechanical energy of the mass spring oscillator.
$($ in J$)$
(in J)
$\begin{array}{llll}\text { 8. } & \mathbf{A} \bigcirc 6.59 \times 10^{-2} & \mathbf{B} \bigcirc 8.77 \times 10^{-2} & \mathbf{C} \bigcirc 1.17 \times 10^{-1} \\ \mathbf{E} \bigcirc 2.06 \times 10^{-1} & \mathbf{F} \bigcirc 2.74 \times 10^{-1} & \mathbf{G} \bigcirc 3.65 \times 10^{-1} & \mathbf{H} \bigcirc 1.85 \times 10^{-1} \\ & \end{array}$
$\mathbf{E} \bigcirc 2.06 \times 10^{-1} \quad \mathbf{F} \bigcirc 2.74 \times 10^{-1} \quad \mathbf{G} \bigcirc 3.65 \times 10^{-1} \quad \mathbf{H} \bigcirc 4.85 \times 10^{-1}$

$$
\begin{aligned}
& T E=K E_{\max } \quad\left(=P E_{\max }\right) \\
& K E_{\max }=\frac{1}{2} m v_{\max }^{2} \\
& v_{\max }=A \omega
\end{aligned}
$$

Everything combined together :

$$
\begin{aligned}
& T E=K E_{\max }=\frac{1}{2} m(A \omega)^{2} \\
& T E=\frac{1}{2} \cdot 1.27 \cdot(0.319 \cdot 1.01)^{2}=6.59 \cdot 10^{-2} \mathrm{~J}
\end{aligned}
$$

Practice Exam \#2

4 pt An extended body (not shown in the figure) has its center of mass (CM) at the origin of the reference frame. In the case below give the direction for the torque τ with respect to the CM on the body due to force \mathbf{F} acting on the body at a location indicated by the vector \mathbf{r}.

4 pt Three small objects are located in the $\mathrm{x}-\mathrm{y}$ plane as shown in the figure. All three objects have the same mass, $\mathrm{m}=1.77 \mathrm{~kg}$.

$$
\begin{aligned}
& \frac{r^{2}}{A: 2^{2}+2^{2}=8} \\
& B: 4^{2}+1^{2}=17 \\
& C: 2^{2}+5^{2}=29
\end{aligned}
$$

What is the moment of inertia of this set of objects with respect to the axis perpendicular to the the $\mathrm{x}-\mathrm{y}$ plane passing through location $\mathrm{x}=3.00 \mathrm{~m}$ and $\mathrm{y}=3.00 \mathrm{~m}$? (The objects are small in size, their moments of inertia about their own centers of mass are negligibly small.) (in $\mathrm{kg} * \mathrm{~m}{ }^{\wedge} 2$)
10. $\mathbf{A} \bigcirc 6.62 \times 10^{1}$

B 7.49×10^{1}
$\mathbf{C} \bigcirc 8.46 \times 10^{1}$
D 9.56×10^{1}
$\mathbf{E} \bigcirc 1.08 \times 10^{2}$
Ff 1.22×10^{2}
$\mathbf{G} \bigcirc 1.38 \times 10^{2}$
$\mathbf{H} \bigcirc 1.56 \times 10^{2}$

$$
\begin{aligned}
I & =m r_{A}^{2}+m r_{B}^{2}+m_{C}^{2}= \\
& =m\left(r_{A}^{2}+r_{B}^{2}+r_{C}^{2}\right)= \\
& =1.77 \cdot(8+17+29)= \\
& =1.77 \cdot 54=95.58 \mathrm{kgm}^{2}
\end{aligned}
$$

4 pt A solid, homogeneous cylinder with of mass of $\mathrm{M}=2.75 \mathrm{~kg}$ and a radius of $\mathrm{R}=18.3 \mathrm{~cm}$ is resting at the top of an incline as shown in the figure.

The height of the incline is $\mathrm{h}=1.49 \mathrm{~m}$, and the angle of the incline is $\theta=14.3^{\circ}$. The cylinder is rolled over the edge very slowly. Then it rolls down to the bottom of the incline without slipping. What is the final speed of the cylinder? (in m / s)
11. $\mathbf{A} \bigcirc 1.45$

By 1.81
$\mathbf{C} \bigcirc 2.26$
$\mathbf{D} \bigcirc 2.83$
$\mathbf{E} \bigcirc 3.53$
$\mathbf{F} \bigcirc 4.41$
$\mathbf{G} \bigcirc 5.52$
$\mathbf{H} \bigcirc 6.90$
Final translational speed after
rolling down from
an incline
height h :
$v_{t, f}=\sqrt{\frac{2 g h}{1+k}}=\sqrt{\frac{2 \cdot 9.81 \cdot 1.49}{1+0.5}}$

$$
v_{t, f}=4.41 \mathrm{~m} / \mathrm{s}
$$

2 pt You ride your bicycle in the forward direction on a straight horizontal road. What is the direction of the velocity vector of your bicycle?
12.A \bigcirc up to the sky

B forward
$\mathbf{C} \bigcirc$ to your right
D down to the ground
E backward
$\mathbf{F} \bigcirc$ The velocity is zero.
$\mathbf{G} \bigcirc$ to your left
$2 p t$ What is the direction of the angular velocity vector of your wheels?
13.A \bigcirc backward

B \bigcirc to your left
$\mathrm{C} \bigcirc$ to your right
D forward
$\mathbf{E} \bigcirc$ down to the ground
$\mathbf{F} \bigcirc$ up to the sky
$\mathbf{G} \bigcirc$ The angular velocity is zero.

Practice Exam \#2

A crate with a mass of $\mathrm{M}=72.5 \mathrm{~kg}$ is suspended by a rope from the endpoint of a uniform boom. The boom has a mass of $\mathrm{m}=126 \mathrm{~kg}$ and a length of $\mathrm{l}=8.02 \mathrm{~m}$. The midpoint of the boom is supported by another rope which is horizontal and is attached to the wall as shown in the figure.

$3 p t$ The boom makes an angle of $\theta=51.6^{\circ}$ with the vertical wall. Calculate the tension in the vertical rope.
(in N)
14. $\mathbf{A} \bigcirc 7.11 \times 10^{2}$

Vertical rop
$\mathbf{B} \bigcirc 8.89 \times 10^{2}$
$\mathbf{F} \bigcirc 1.11 \times 10^{3}$
$\mathbf{F} \bigcirc 2.17 \times 10^{3}$
$\mathbf{G} \bigcirc 2.71 \times 10^{3}$
DO: Mg $=72.5 \cdot 9.81=$
$\mathbf{H \bigcirc 3 . 3 9 \times 1 0 ^ { 3 }}=711 \mathrm{~N}$
$3 p t$ What is the tension in the horizontal rope?
(in N)
15. $\mathbf{A} \bigcirc 5.23 \times 10^{2}$

B $\bigcirc 7.59 \times 10^{2}$
$\mathbf{C} \bigcirc 1.10 \times 10^{3}$
$\mathbf{D} \bigcirc 1.60 \times 10^{3}$
$\mathbf{E} \bigcirc 2.31 \times 10^{3}$
$\mathbf{G} \bigcirc 4.86 \times 10^{3}$
$\mathbf{H} \bigcirc 7.05 \times 10^{3}$

point: P
Bolance of torques:

$$
M g l \sin \theta+m g \frac{l}{2} \sin \theta=T \cdot \frac{l}{2} \cos \theta
$$

clockwise torques caw. torque

$$
\begin{aligned}
& \quad(2 M+m) g \tan \theta=T \\
& T=(2 \cdot 72.5+126) \cdot 9.81 \cdot \tan 51.6^{\circ} \\
& T=3354 \mathrm{~N}
\end{aligned}
$$

