Nagy,

Please, sit in row C.

Tibor

Keep this exam CLOSED until advised by the instructor.
50 minute long closed book exam.
Fill out the bubble sheet: last name, first initial, student number (PID). Leave the section, code, form and signature areas empty.

Three two-sided handwritten 8.5 by 11 help sheets are allowed.

When done, hand in your test and your bubble sheet.
Thank you and good luck!
Posssibly useful constants:

- $\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2}$
- $\mathrm{G}=6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$
- $\rho_{\text {water }}=1000 \mathrm{~kg} / \mathrm{m}^{3}=1 \mathrm{~kg} / \mathrm{l}=1 \mathrm{~g} / \mathrm{cm}^{3}$
- $1 \mathrm{~atm}=101.3 \mathrm{kPa}=760 \mathrm{mmHg}$
- $\mathrm{N}_{\mathrm{A}}=6.02 \times 10^{23} 1 / \mathrm{mol}$
- $\mathrm{R}=8.31 \mathrm{~J} /(\mathrm{molK})$
- $\mathrm{k}_{\mathrm{B}}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
- $0{ }^{\circ} \mathrm{C}=273.15 \mathrm{~K}$

1 pt Are you sitting in the seat assigned?
1.A \bigcirc Yes, I am.
$4 p t$ The paths of two small satellites, $\mathrm{M} 1=2.00 \mathrm{~kg}$ and M 2 $=9.00 \mathrm{~kg}$, are shown below, drawn to scale, with M1 corresponding to the circular orbit. They orbit around a massive star, also shown below. The orbits are in the plane of the paper.

The period of M1 is $\mathrm{T} 1=26.0$ years. Calculate the period of M2, in years.
2.

$\mathbf{A} \bigcirc 1.03 \times 10^{2}$	$\mathbf{B} \bigcirc 1.16 \times 10^{2}$	$\mathbf{C} \bigcirc 1.31 \times 10^{2}$	
$\mathbf{D} \bigcirc 1.48 \times 10^{2}$	$\mathbf{E} \bigcirc 1.68 \times 10^{2}$	$\mathbf{F} \bigcirc 1.89 \times 10^{2}$	
$\mathbf{G} \bigcirc 2.14 \times 10^{2}$	$\mathbf{H} \bigcirc 2.42 \times 10^{2}$		

$3 p t$ Planet-X has a mass of $3.55 \times 10^{24} \mathrm{~kg}$ and a radius of 8450 km . What is the First Cosmic Speed i.e. the speed of a satellite on a low lying circular orbit around this planet? (Planet-X doesn't have any atmosphere.) (in km/s)
3. $\quad \mathbf{A} \bigcirc 2.25$
$\mathbf{B} \bigcirc 2.54$
$\mathbf{C} \bigcirc 2.87$
$\mathbf{D} \bigcirc 3.25$
$\mathbf{E} \bigcirc 3.67$
$\mathbf{F} \bigcirc 4.15$
$\mathbf{G} \bigcirc 4.68$
H $\bigcirc 5.29$
$3 p t$ What is the Second Cosmic Speed i.e. the minimum speed required for a satellite in order to break free permanently from the planet?
(in km / s)
4. $\quad \mathbf{A} \bigcirc 5.63$
$\mathbf{B} \bigcirc 7.49$
$\mathbf{C} \bigcirc 9.96$
$\mathbf{D} \bigcirc 1.32 \times 10^{1} \quad \mathbf{E} \bigcirc 1.76 \times 10^{1}$
$\mathbf{F} \bigcirc 2.34 \times 10^{1}$
$\mathbf{G} \bigcirc 3.12 \times 10^{1} \quad \mathbf{H} \bigcirc 4.14 \times 10^{1}$

The height of the Mercury column in the Toricelli barometer is $\mathrm{h}=760 \mathrm{~mm}$ here on Earth at sea level. See figure.

$3 p t$ What would be the height of the Mercury column on the surface of the Moon? The Moon has no atmosphere, and the gravitational field is six times weaker on the Moon than here on Earth.
5.A $\bigcirc 127 \mathrm{~mm}$, six times shorter.

B $\bigcirc 760 \mathrm{~mm}$, same as on Earth.
$\mathbf{C} \bigcirc 0 \mathrm{~mm}$.
D $\bigcirc 4560 \mathrm{~mm}$, six times higher.
$3 p t$ What would be the height of the Mercury column inside a Moon-base where an Earth-like air atmosphere is maintained for comfortable living? (The Toricelli barometer has sufficient amount of Mercury, and the glass tube can be extended, if necessary.)
6.A $\bigcirc 127 \mathrm{~mm}$, six times shorter.

B $\bigcirc 4560 \mathrm{~mm}$, six times higher.
$\mathbf{C} \bigcirc 0 \mathrm{~mm}$.
D $\bigcirc 760 \mathrm{~mm}$, same as on Earth.
$4 p t$ An object weighs 75.8 N in air. When it is suspended from a force scale and completely immersed in water the scale reads 20.3 N . Determine the density of the object.

```
(in kg/m^3)
```

7. $\mathbf{A} \bigcirc 4.55 \times 10^{2} \quad \mathbf{B} \bigcirc 5.32 \times 10^{2} \quad \mathbf{C} \bigcirc 6.23 \times 10^{2}$
$\mathbf{D} \bigcirc 7.29 \times 10^{2} \quad \mathbf{E} \bigcirc 8.53 \times 10^{2} \quad \mathbf{F} \bigcirc 9.98 \times 10^{2}$
$\mathbf{G} \bigcirc 1.17 \times 10^{3} \quad \mathbf{H} \bigcirc 1.37 \times 10^{3}$

6 pt The figure illustrates flow through a pipe with diameters of 1 mm and 2 mm and with different elevations. p_{x} is the pressure in the pipe, and v_{x} is the speed of a non-viscous incompressible fluid at locations $\mathrm{x}=\mathrm{Q}, \mathrm{R}, \mathrm{S}, \mathrm{T}$, or U .

Select the correct answers.
$\triangleright \mathrm{p}_{\mathrm{S}}$ is $\ldots \mathrm{p}_{\mathrm{R}}$.

${ }^{\triangleright} \mathrm{p}_{\mathrm{S}}$ is $\ldots \mathrm{p}_{\mathrm{R}}$. 8. $\mathbf{A} \bigcirc$ Greater than $\mathbf{C} \bigcirc$ Equal to	$\mathbf{B} \bigcirc$ Less than
$\triangleright \mathrm{p}_{\mathrm{T}}$ is $\ldots \mathrm{p}_{\mathrm{S}}$. 9. $\mathbf{A} \bigcirc$ Greater than $\mathbf{C} \bigcirc$ Equal to	$\mathbf{B} \bigcirc$ Less than
$\triangleright \mathrm{v}_{\mathrm{S}}$ is $\ldots 2 \mathrm{v}_{\mathrm{U}}$. 10. $\mathbf{A} \bigcirc$ Greater than $\mathbf{C} \bigcirc$ Equal to	$\mathbf{B} \bigcirc$ Less than

$4 p t$ An organ pipe is 1.70 m long and it is open at one end and closed at the other end. What are the frequencies of the lowest three harmonics produced by this pipe? The speed of sound is $340 \mathrm{~m} / \mathrm{s}$. Only one answer is correct.
13.A $\bigcirc 200 \mathrm{~Hz}, 400 \mathrm{~Hz}, 600 \mathrm{~Hz}$

B $\bigcirc 100 \mathrm{~Hz}, 300 \mathrm{~Hz}, 500 \mathrm{~Hz}$
C $\bigcirc 200 \mathrm{~Hz}, 300 \mathrm{~Hz}, 400 \mathrm{~Hz}$
$\mathbf{D} \bigcirc 50 \mathrm{~Hz}, 100 \mathrm{~Hz}, 150 \mathrm{~Hz}$
$\mathbf{E} \bigcirc 50 \mathrm{~Hz}, 150 \mathrm{~Hz}, 250 \mathrm{~Hz}$
$\mathbf{F} \bigcirc 100 \mathrm{~Hz}, 200 \mathrm{~Hz}, 300 \mathrm{~Hz}$
$\mathbf{G} \bigcirc 200 \mathrm{~Hz}, 600 \mathrm{~Hz}, 1000 \mathrm{~Hz}$
$\mathbf{H} \bigcirc 50 \mathrm{~Hz}, 100 \mathrm{~Hz}, 200 \mathrm{~Hz}$
$3 p t$ A bimetallic strip is held fixed at the bottom end as shown in the figure.

The metal on the left has a coefficient of linear heat expansion of $\alpha_{\text {left }}=3.57 \times 10^{-5} 1 / \mathrm{K}$, the metal on the right has $\alpha_{\text {right }}=$ $1.99 \times 10^{-5} 1 / \mathrm{K}$. When the strip is cooled, it will ... (complete the sentence)
14. $\mathrm{A} \bigcirc \ldots$ bend right.
$\mathbf{B} \bigcirc \ldots$ bend left.
$\mathbf{C} \bigcirc$... remain straight.

4 pt 9.10 liters of Nitrogen gas at $47.0^{\circ} \mathrm{C}$ temperature and 1.80 atm pressure contains how many moles?

| 15. $\mathbf{A} \bigcirc 0.488$ | $\mathbf{B} \bigcirc 0.552$ | $\mathbf{C} \bigcirc 0.624$ | $\mathbf{D} \bigcirc 0.705$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{E} \bigcirc 0.796$ | $\mathbf{F} \bigcirc 0.900$ | $\mathbf{G} \bigcirc 1.017$ | $\mathbf{H} \bigcirc 1.149$ |

$4 p t$ A 21.6 liter gas bottle contains 7.90×10^{23} Helium molecules at a temperature of 358 K . What is the thermal energy of the gas?
(in J)

$$
\begin{array}{llll}
\text { 16. } & \mathbf{A} \bigcirc 5.86 \times 10^{3} & \mathbf{B} \bigcirc 7.32 \times 10^{3} & \mathbf{C} \bigcirc 9.15 \times 10^{3} \\
\mathbf{D} \bigcirc 1.14 \times 10^{4} & \mathbf{E} \bigcirc 1.43 \times 10^{4} & \mathbf{F} \bigcirc 1.79 \times 10^{4} \\
\mathbf{G} \bigcirc 2.23 \times 10^{4} & \mathbf{H} \bigcirc 2.79 \times 10^{4} &
\end{array}
$$

$\overline{\text { Printed from LON-CAPA@MSU } \quad \text { Licensed under GNU General Public License }}$

