## Nagy,

## Tibor

Keep this exam CLOSED until advised by the instructor.
50 minute long closed book exam.
Fill out the bubble sheet: last name, first initial, student number (PID). Leave the section, code, form and signature areas empty.

Three two-sided handwritten 8.5 by 11 help sheets are allowed.
When done, hand in your test and your bubble sheet.
Thank you and good luck!
Posssibly useful constants:

- $\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2}$
- $\mathrm{G}=6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$
- $\rho_{\text {water }}=1000 \mathrm{~kg} / \mathrm{m}^{3}=1 \mathrm{~kg} / \mathrm{l}=1 \mathrm{~g} / \mathrm{cm}^{3}$
- $1 \mathrm{~atm}=101.3 \mathrm{kPa}$
- $\mathrm{N}_{\mathrm{A}}=6.02 \times 10^{23} 1 / \mathrm{mol}$
- $\mathrm{R}=8.31 \mathrm{~J} /(\mathrm{molK})$
- $\mathrm{k}_{\mathrm{B}}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
- $0{ }^{\circ} \mathrm{C}=273.15 \mathrm{~K}$


## Please, sit in row I .

1 pt Are you sitting in the seat assigned?
1.A Yes, I am.
$3 p t$ The gravitational acceleration is $9.81 \mathrm{~m} / \mathrm{s}^{2}$ here on Earth at sea level. What is the gravitational acceleration at a height of 350 km above the surface of the Earth, where the International Space Station (ISS) flies? (The mass of the Earth is $5.97 \times 10^{24} \mathrm{~kg}$, and the radius of the Earth is 6370 km .)
2. A $\bigcirc$ It is $9.81 \mathrm{~m} / \mathrm{s}^{2}$, the same.
$\mathbf{B} \bigcirc$ It is somewhat less than $9.81 \mathrm{~m} / \mathrm{s}^{2}$.
$\mathrm{C} \bigcirc$ It is twice of $9.81 \mathrm{~m} / \mathrm{s}^{2}$.
$\mathbf{D} \bigcirc$ It is zero, since the ISS is in the state of weightlessness.
$\mathbf{E} \bigcirc$ It is somewhat greater than $9.81 \mathrm{~m} / \mathrm{s}^{2}$.
$\mathbf{F} \bigcirc$ It is half of $9.81 \mathrm{~m} / \mathrm{s}^{2}$.


The height of the space station is
small compared to the radius of
Earth, it is about $5 \%$ of it:
$350 / 6370=0.055$. Therefore the
gravitational acceleration is only
somewhat less than $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$.
But we can calculate it:
$g=G \frac{M_{E}}{\left(R_{E}+h\right)^{2}}=8.82 \mathrm{~m} / \mathrm{s}^{2}$

4 At 345 kg satellite is orbiting on a circular orbit 8290 km above the Earth's surface. Determine the speed of the satellite. (The mass of the Earth is $5.97 \times 10^{24} \mathrm{~kg}$, and the radius of the Earth is 6370 km .)
(in $\mathrm{km} / \mathrm{s}$ )


$$
\left.\begin{array}{rl}
G & =6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2} \\
\begin{array}{l}
\mathrm{M}
\end{array}=5.97 \times 10^{24} \mathrm{~kg} \\
R & =6370 \mathrm{~km} \\
h & =8290 \mathrm{~km}
\end{array}\right\} r=R+h=14,660 \mathrm{~km}=\left\{\begin{aligned}
7.466 \times 10^{7} \mathrm{~m}
\end{aligned}\right.
$$

$m=345 \mathrm{~kg}$ : the mass of the satellite is not needed for the

$$
\begin{aligned}
& \text { speed. } \\
& v=\sqrt{\frac{G M}{r}}=\sqrt{\frac{6.67 \times 10^{-11} \cdot 5.97 \times 10^{24}}{1.466 \times 10^{7}}} \\
& v=5212 \mathrm{~m} / \mathrm{s} \cong 5.21 \mathrm{~km} / \mathrm{s}
\end{aligned}
$$

Practice Exam \#3

4 pt The paths of two small satellites, $\mathrm{M}_{\mathrm{L}}=8.00 \mathrm{~kg}$ and $\mathrm{M}_{\mathrm{R}}=3.00 \mathrm{~kg}$, are shown below, drawn to scale, with $\mathrm{M}_{\mathrm{R}}$ corresponding to the orbit on the right hand side in the figure. They orbit in the same plane around a massive star, as shown below.


$$
\begin{aligned}
& 2 a_{L}=5 \Rightarrow a_{L}=2.5 \\
& 2 a_{R}=10 \Rightarrow a_{R}=5 \\
& T_{L}=? \\
& T_{R}=28 \mathrm{yrs}
\end{aligned}
$$

The period of $\mathrm{M}_{\mathrm{R}}$ is 28.0 years. Calculate the period of $\mathrm{M}_{\mathrm{L}}$, in years.
4.$1.24 \times 10^{1}$
$\mathbf{C} \bigcirc 1.55 \times 10^{1}$
D
$1.93 \times 10^{1}$$3.02 \times 10^{1}$$3.78 \times 10^{1}$$4.72 \times 10^{1}$

$$
\begin{aligned}
& \text { Kepler's third law: } \\
& \frac{T_{L}^{2}}{T_{R}^{2}}=\frac{a_{L}^{3}}{a_{R}^{3}} \Rightarrow T_{L}=T_{R} \cdot \sqrt{\frac{a_{L}^{3}}{a_{R}^{3}}} \\
& T_{L}=28 \cdot \sqrt{\frac{2.5^{3}}{5^{3}}}=\frac{28}{\sqrt{2^{3}}}=\frac{28}{2 \sqrt{2}}=\frac{14}{\sqrt{2}} \\
& T_{L}=9.9 \text { yrs }
\end{aligned}
$$

$3 p t$ A collapsible plastic bag (see figure) contains a glucose solution.


If the average gauge pressure in the vein is $1.34 \times 10^{4} \mathrm{~Pa}$, what must be the minimum height, h , of the bag in order to infuse glucose into the vein? Assume that the density of the solution is $1.02 \mathrm{~kg} / \mathrm{l}$. (in m)
5. A$3.03 \times 10^{-1}$

B $4.39 \times 10^{-1}$ C$6.37 \times 10^{-1}$

D$9.24 \times 10^{-1}$
$\mathbf{G} \bigcirc 2.82$
$\mathbf{H} \bigcirc 4.08$
$p=1.34 \times 10^{4} \mathrm{~Pa}=13.4 \mathrm{kPa}$
$\rho=1.02 \mathrm{~kg} / \mathrm{l}=1020 \mathrm{~kg} / \mathrm{m}^{3}$
Hydrostatic pressure: $p=s g h \Rightarrow h=\frac{P}{s g}=\frac{1.34 \times 10}{1020 \cdot 9.81}$
$h=1.34 m \quad(\approx 4$ feet $)$


What happens to the water level, when the ice cube melts? (No water is lost due to evaporation.)
6. A $\bigcirc$ The water level will not change.

B $\bigcirc$ It depends on how much water we have in the glass, and how big the ice cube is.
$\mathbf{C} \bigcirc$ The water level will fall.
$\mathbf{D} \bigcirc$ The water level will rise.
$2 p t$ A large ice cube floats in a glass of water.


There is a block of wood frozen inside the block of ice. What happens to the water level when all the ice melts? All we know is that the density of the wood is less than the density of water. (No water is lost due to evaporation.)
7.A The water level will not change.
$\mathbf{B} \bigcirc$ Without knowing the density of the wood block compared to the density of the ice, we cannot answer this question.
$\mathbf{C} \bigcirc$ The water level will fall.
$\mathbf{D} \bigcirc$ The water level will rise.

2 pt A large ice cube floats in a glass of water.


There is a steel bolt frozen inside the ice cube. What happens to the water level when all the ice melts? (No water is lost due to evaporation.)
8.A The water level will not change.
$\mathbf{B} \bigcirc$ Without knowing the mass of the bolt, we cannot answer this question.
$\mathrm{C} \bigcirc$ The water level will rise.
D The water level will fall.


4 pt An Airbus A380-800 passenger airplane is cruising at constant altitude on a straight line with a constant speed. The total surface area of the two wings is $395 \mathrm{~m}^{2}$. The average speed of the air just below the wings is $253 \mathrm{~m} / \mathrm{s}$, and it is $283 \mathrm{~m} / \mathrm{s}$ just above the surface of the wings. What is the mass of the airplane? The average density of the air around the airplane is $\rho_{\text {air }}=1.19 \mathrm{~kg} / \mathrm{m}^{3}$. (in kg )
9. $\mathbf{A} \bigcirc$
$\mathbf{E} \bigcirc$
$1.637 \times 10^{5}$
B
$\mathbf{F} \bigcirc 6.815 \times 10^{5}$
$5.124 \times 10^{5}$
$2.178 \times 10^{5}$
$\mathbf{C} \bigcirc 2.897 \times 10^{5}$
D $3.852 \times 10^{5}$
$\mathbf{G} \bigcirc 9.063 \times 10^{5}$
H $\bigcirc 1.205 \times 10^{6}$
Bernoulli principle:

$$
\begin{aligned}
& \frac{1}{2} s v_{1}^{2}+\underbrace{s g h_{1}}+p_{1}=\frac{1}{2} s v_{2}^{2}+\underset{g_{2}}{s h_{2}}+p_{2} \\
& \xrightarrow[\text { VIIIIITO- }]{v_{1} \& \overline{p_{1}} \text { because }} \\
& \xrightarrow[v_{2} \& p_{2}]{ } \\
& \Delta p=p_{2}-p_{1}=\frac{1}{2} \rho\left(v_{1}^{2}-v_{2}^{2}\right) \\
& F_{\text {lat }}=\Delta P \cdot A=\frac{1}{2} S\left(v_{1}^{2}-v_{2}^{2}\right) A \\
& m g=F_{\text {lift }} \Rightarrow m=\frac{F_{\text {lift }}}{g}=\frac{1}{2} \cdot \frac{S\left(v_{1}^{2}-v_{2}^{2}\right) A}{g} \\
& \begin{aligned}
m=\frac{1}{2} \cdot \frac{1.19 \cdot\left(283^{2}-253^{2}\right) \cdot 395}{9.81} & =3.85 \times 10^{5} \mathrm{~kg}= \\
& =\underbrace{385 t}
\end{aligned} \\
& \text { The Airbus A380 is } \\
& \begin{array}{l}
\text { twice as big as the } \\
\text { Boeing } 747 \text { Jumbo Jet. }
\end{array}
\end{aligned}
$$

4 pt Two sounds have intensities of $1.50 \times 10^{-8}$ and $9.30 \times 10^{-4} \mathrm{~W} / \mathrm{m}^{2}$ respectively. What is the magnitude of the sound level difference between them in dB units?

$$
\begin{aligned}
& \begin{array}{lllll}
\text { 10. } \mathbf{A} \bigcirc 8.66 & \mathbf{B} \bigcirc 11.52 & \mathbf{C} \bigcirc 15.32 & \mathbf{D} \bigcirc 20.37 \\
\mathbf{E} \bigcirc 27.09 & \mathbf{F} \bigcirc 36.03 & \mathbf{G} \bigcirc 47.92 & \mathbf{H} \bigcirc 63.74
\end{array} \\
& I_{A}=1.50 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} \\
& I_{B}=9.30 \times 10^{-4} \mathrm{~W} / \mathrm{m}^{2} \\
& I_{0}=1.00 \times 10^{-12} \mathrm{w} / \mathrm{m}^{2} \\
& \beta_{A}=10 \cdot \log \left(I_{A} / I_{O}\right)=10 \cdot \log \left(1.5 \times 10^{-8} / 10^{-12}\right) \\
& \beta_{A}=10 \cdot \log \left(1.5 \times 10^{4}\right)=41.76 \mathrm{~dB} \\
& \beta_{B}=10 \cdot \log \left(I_{B} / I_{0}\right)=10 \cdot \log \left(9.3 \times 10^{-4} / 10^{-12}\right) \\
& \beta_{B}=10 \cdot \log \left(9.3 \times 10^{8}\right)=89.68 \mathrm{~dB} \\
& \beta_{B}-\beta_{A}=47.92
\end{aligned}
$$

Quick and short way:

$$
\begin{aligned}
& \Delta \beta=\beta_{B}-\beta_{A}=10\left(\log \left(I_{B} / I_{0}\right)-\log \left(I_{A} / I_{0}\right)\right) \\
& \Delta \beta=10 \cdot \log \frac{I_{B} / I_{0}}{I_{A} / I_{0}}=10 \cdot \log \left(I_{B} / I_{A}\right) \\
& \Delta \beta=10 \cdot \log \left(9.3 \times 10^{-4} / 1.5 \times 10^{-8}\right) \\
& \Delta \beta=10 \cdot \log \left(6.2 \times 10^{4}\right)=47.92
\end{aligned}
$$

4 pt A stationary horn emits a sound with a frequency of 202 Hz . A car is moving toward the horn on a straight road with constant speed. If the driver of the car hears the horn at a frequency of 226 Hz , then what is the speed of
the car? Use $340 \mathrm{~m} / \mathrm{s}$ for the speed of the sound. the car? Use $340 \mathrm{~m} / \mathrm{s}$ for the speed of the sound.
(in $\mathrm{m} / \mathrm{s}$ ) (in $\mathrm{m} / \mathrm{s}$ )
11. $\mathbf{A} \bigcirc 9.14$

Doppler effect:

$$
\left.\begin{array}{ll}
f_{\sigma}=f_{s} \cdot \frac{C \pm v_{\sigma}}{c \pm v_{s}} & \left.\begin{array}{l}
c=340 \mathrm{~m} / \mathrm{s} \\
f_{s}=202 \mathrm{~Hz} \\
f_{\sigma}=226 \mathrm{~Hz}
\end{array}\right\} \text { up-shift } \\
v_{\sigma}=?
\end{array}\right\} \begin{aligned}
v_{\sigma}=f_{s} \cdot \frac{C+v_{\sigma}}{c} & \begin{aligned}
f_{\sigma} & C=f_{s} \cdot c+f_{s} \cdot v_{\sigma} \\
f_{\sigma} & \\
v_{\sigma}=340 \cdot \frac{226-202}{202} & =40.4 \mathrm{~m} / \mathrm{s} \\
& =145 \mathrm{~km} / \mathrm{h} \\
& =91 \mathrm{mph}
\end{aligned}
\end{aligned}
$$

a little too fast

Church organs have a set of pipes with different lengths. With those different pipes organs can produce sounds over a wide range of frequencies.

2 pt If the lowest frequency produced by an organ is 29.6 Hz , and the highest frequency is 1.35 kHz , then what is the shortest possible wavelength of sound the organ can produce? Assume that the speed of sound is $341 \mathrm{~m} / \mathrm{s}$. (in cm )
12. A

2 pt What is the longest possible sound wavelength the organ can produce?
(in m)
13. A
Speed-wavelength-frequency:

$$
c=\lambda \cdot f \quad(c=341 \mathrm{~m} / \mathrm{s})
$$

$$
\lambda=\frac{c}{f}
$$

$$
\begin{aligned}
\lambda_{\text {shortest }}=\frac{c}{f_{\text {highest }}}=\frac{341}{1350} & =0.253 \mathrm{~m}= \\
& =25.3 \mathrm{~cm}
\end{aligned}
$$

$$
\lambda_{\text {langest }}=\frac{c}{f_{\text {lowest }}}=\frac{341}{29.6}=11.5 \mathrm{~m}
$$

$\qquad$


The metal on the left has a coefficient of linear heat expansion of $\alpha_{\text {left }}=1.90 \times 10^{-5} 1 / \mathrm{K}$, the metal on the right has $\alpha_{\text {right }}=3.15 \times 10^{-5} 1 / \mathrm{K}$. When the strip is heated, it will ... (complete the sentence)
14.A $\bigcirc \ldots$ bend right.
$\mathrm{B} \bigcirc \ldots$ remain straight.
$\mathrm{C} \bigcirc \ldots$ bend left.
The metal on the right expands more than the metal on the left when the bimetallic strip is heated, because it has a larger coefficient of heat expansion than the metal on the left. Therefore the strip will bend left.

4 pt What is the temperature of 1.67 moles of Nitrogen gas inside a 7.81 liter container, if the pressure of the gas is 10.7 atm ? (in K)

15. | $\mathbf{A} \bigcirc 610.0$ | $\mathbf{B} \bigcirc 762.5$ | $\mathbf{C} \bigcirc 953.1$ | $\mathbf{D} \bigcirc 1191.4$ |
| :--- | :--- | :--- | :--- |
| $\mathbf{E} \bigcirc 1489.2$ | $\mathbf{F} \bigcirc 1861.6$ | $\mathbf{G} \bigcirc 2326.9$ | $\mathbf{H} \bigcirc 2908.7$ |$~$

Ideal gas-law:

$$
\begin{aligned}
& P V=n R T \Rightarrow T=\frac{P V}{n R} \\
& R=8.31 \frac{\mathrm{~J}}{\text { mol K }} \\
& P=10.7 \mathrm{~atm}=1.084 \times 10^{6} \mathrm{~Pa}
\end{aligned}
$$

(because 1 atm $=101,300 \mathrm{~Pa}$ )

$$
n=1.67 \mathrm{~mol}
$$

$$
V=7.81 \mathrm{l}=7.81 \times 10^{-3} \mathrm{~m}^{3}
$$

(because $1 l=10^{-3} m^{3}$ or $1 \mathrm{~m}^{3}=1000 l$ )

$$
T=\frac{p V}{n R}=\frac{1.084 \times 10^{6} \cdot 7.81 \times 10^{-3}}{1.67 \cdot 8.31}=610 \mathrm{~K}
$$

$2 p t$ A gas bottle contains $6.15 \times 10^{23}$ Ammonia molecules at a temperature of 308 K . What is the thermal energy of the gas? (You might need to know Boltzmann's constant: $\mathrm{k}_{\mathrm{B}}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$.) (in J )
16. $\mathrm{A} \bigcirc 7.85 \times 10^{3}$

B $8.87 \times 10^{3}$
C $1.00 \times 10^{4}$
D $1.13 \times 10^{4}$
E $\bigcirc 1.28 \times 10^{4}$
F $\bigcirc 1.45 \times 10^{4}$
G $\bigcirc 1.63 \times 10^{4}$
H $1.85 \times 10^{4}$
$2 p t$ What is the average energy of a single molecule?
(in J)
17. $\mathbf{A} \bigcirc 1.37 \times 10^{-21}$

B$1.99 \times 10^{-21}$
$\mathbf{C} \bigcirc 2.89 \times 10^{-21}$
$\mathbf{D} \bigcirc 4.18 \times 10^{-21}$
$\mathbf{E} \bigcirc$
$6.07 \times 10^{-21}$
F $\bigcirc$
$8.80 \times 10^{-21}$
G $1.28 \times 10^{-20}$
$\mathbf{H} \bigcirc 1.85 \times 10^{-20}$
$2 p t$ On average how much energy is stored by ONE degree of freedom for ONE single molecule?
(in J)
18. $\mathbf{A} \bigcirc 5.57 \times 10^{-22}$

B $6.97 \times 10^{-22}$
$\mathbf{C} \bigcirc 8.71 \times 10^{-22}$
$\mathbf{D} \bigcirc 1.09 \times 10^{-21}$
$\mathbf{E} \bigcirc 1.36 \times 10^{-21}$
F〇 $1.70 \times 10^{-21}$
G $2.13 \times 10^{-21}$
$\mathbf{H} \bigcirc 2.66 \times 10^{-21}$

Printed from LON-CAPA@MSU
Ammonia: $\mathrm{NH}_{3} \Rightarrow f=6:$ degrees of $f$
$\mathrm{~N}=6.15 \times 10^{23}$ : number of molecules

$$
\begin{aligned}
& T=308 \mathrm{~K}: \text { temperature } \\
& k_{B}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K} \\
& \epsilon_{1}=\frac{1}{2} k_{B} T=\frac{1}{2} \cdot 1.38 \times 10^{-23} \cdot 308=2.13 \times 10^{-21} \mathrm{~J} \\
& \epsilon=f \cdot \epsilon_{1}=1.28 \times 10^{-20} \mathrm{~J} \\
& U=N \cdot \epsilon=7.84 \times 10^{3} \mathrm{~J}
\end{aligned}
$$

