Nagy,

Tibor

Keep this exam CLOSED until advised by the instructor.
120 minute long closed book exam.
Fill out the bubble sheet: last name, first initial, student number (PID). Leave the section, code, form and signature areas empty.

Four two-sided handwritten 8.5 by 11 help sheets are allowed.
When done, hand in your test and your bubble sheet.
Thank you and good luck!
Posssibly useful constants:

- $\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2}$
- $G=6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$
- $\rho_{\text {water }}=1000 \mathrm{~kg} / \mathrm{m}^{3}=1 \mathrm{~kg} / \mathrm{l}=1 \mathrm{~g} / \mathrm{cm}^{3}$
- $1 \mathrm{~atm}=101.3 \mathrm{kPa}=760 \mathrm{mmHg}$
- $\mathrm{N}_{\mathrm{A}}=6.02 \times 10^{23} 1 / \mathrm{mol}$
- $\mathrm{R}=8.31 \mathrm{~J} /(\mathrm{molK})$
- $\mathrm{k}_{\mathrm{B}}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
- $\mathrm{c}_{\text {water }}=4.1868 \mathrm{~kJ} /\left(\mathrm{kg}^{\circ} \mathrm{C}\right)=1 \mathrm{kcal} /\left(\mathrm{kg}^{\circ} \mathrm{C}\right)$
- $1 \mathrm{cal}=4.1868 \mathrm{~J}$
- $\sigma=5.67 \times 10^{-8} \mathrm{~W} /\left(\mathrm{m}^{2} \mathrm{~K}^{4}\right)$
- $\mathrm{b}=2.90 \times 10^{-3} \mathrm{~m} \cdot \mathrm{~K}$

Posssibly useful Moments of Inertia:

- Solid homogeneous cylinder: $\mathrm{I}_{\mathrm{CM}}=(1 / 2) \mathrm{MR}^{2}$
- Solid homogeneous sphere: $\mathrm{I}_{\mathrm{CM}}=(2 / 5) \mathrm{MR}^{2}$
- Thin spherical shell: $\mathrm{I}_{\mathrm{CM}}=(2 / 3) \mathrm{MR}^{2}$
- Straight thin rod with axis through center: $\mathrm{I}_{\mathrm{CM}}=(1 / 12) \mathrm{ML}^{2}$
- Straight thin rod with axis through end: $\mathrm{I}=(1 / 3) \mathrm{ML}^{2}$

Please, sit in seat:

Thank you!

$1 p t$ Are you sitting in the seat assigned?

1.A Yes, I am.

$3 p t$ A tennis ball is tossed straight up into the air. It flies up, it reaches the peak position, and then it falls back down. What can we tell about the ball's velocity and acceleration, when the ball is at the peak of its trajectory? (Only one answer is correct.)
2.A \bigcirc The velocity points up, and the acceleration is zero.
$\mathbf{B} \bigcirc$ The velocity points down, and the acceleration points up.
$\mathbf{C} \bigcirc$ The velocity points up, and the acceleration points down.
D The velocity points down, and the acceleration is zero.
E The velocity is zero, and the acceleration points down.
F \bigcirc Both the velocity and the acceleration are zero.
$\mathbf{G} \bigcirc$ Both the velocity and the acceleration point down.
$\mathbf{H} \bigcirc$ Both the velocity and the acceleration point up.
$\mathbf{I} \bigcirc$ The velocity is zero, and the acceleration points up.

4 pt A small, single engine airplane is about to take off. The airplane becomes airborne, when its speed reaches 177.0 km / h. The conditions at the airport are ideal, there is no wind. When the engine is running at its full power, the acceleration of the airplane is $4.50 \mathrm{~m} / \mathrm{s}^{2}$. What is the minimum required length of the runway? (in m)
3.3.65×10^{1}
B $\bigcirc 4.85 \times 10^{1}$
F $\bigcirc 1.52 \times 10^{2}$
$\mathbf{G} \bigcirc 2.02 \times 10^{2}$
D 8.58×10^{1}
E $\bigcirc 1.14 \times 10^{2}$

.
H 2.69×10^{2}

$$
\begin{aligned}
& 3.6 \mathrm{~km} / \mathrm{h}=1 \mathrm{~m} / \mathrm{s} \\
& 177 \mathrm{~km} / \mathrm{h}=49.17 \mathrm{~m} / \mathrm{s} \\
& v^{2}=2 a d \Rightarrow d=\frac{v^{2}}{2 a} \\
& d=\frac{49.17^{2}}{2 \cdot 4.5}=269 \mathrm{~m}
\end{aligned}
$$

A car is exiting the highway on a circular exit ramp. (See figure.)

$3 p t$ The driver slows the car down to the posted speed limit, enters the exit ramp and then maintains a constant speed. When the car is at point \mathbf{X} on the ramp, which vector best represents the direction of the car's acceleration?
4. $\mathrm{A} \bigcirc \mathrm{A}$.

At location x centripetal
$B \bigcirc B$.
$\mathrm{C} \bigcirc \mathrm{C}$.
$\mathrm{D} \bigcirc \mathrm{D}$.
$\mathrm{E} \bigcirc \mathrm{E}$.
$F \bigcirc F$.
$\mathrm{G} \bigcirc \mathrm{G}$.
$\mathrm{H} \bigcirc \mathrm{H}$.
$I \bigcirc$ I: the acceleration is zero.

3 pt After passing point \mathbf{X} but before reaching point \mathbf{Y} the driver starts to push the brake pedal and applies the brakes for the rest of the exit ramp. Which vector best represents the direction of the car's acceleration when the car is at point \mathbf{Y} ?
5. $\mathrm{A} \bigcirc \mathrm{A}$.
$\mathrm{B} \bigcirc \mathrm{B}$.
$\mathrm{C} \bigcirc \mathrm{C}$.
$\mathrm{D} \bigcirc \mathrm{D}$.
$\mathrm{E} \bigcirc \mathrm{E}$.
$\mathbf{F} \bigcirc \mathrm{F}$.
$\mathbf{G} \bigcirc \mathrm{G}$.
$\mathbf{H} \bigcirc \mathrm{H}$.
$\mathrm{I} \bigcirc \mathrm{I}$: the acceleration is zero.

At location Y centripetal acceleration and deceleration

In the figure below, assume that the pulleys are massless and frictionless.

constant velocity $\Rightarrow a=0$
$12 p t$ The masses of the blocks are $M_{a}=3.50 \mathrm{~kg}, M_{b}=2.00 \mathrm{~kg}, M_{c}=6.00 \mathrm{~kg}$, and there is friction between the horizontal plane and $M_{c},\left(\mu_{\mathrm{k}} \neq 0\right) . M_{c}$ is observed to travel at a constant velocity.
$\triangleright T_{x}$ is $\ldots . T_{y}$.
6. $\mathbf{A} \bigcirc$ True
$\mathrm{B} \bigcirc$ False
$\mathbf{C} \bigcirc$ Greater than
$\mathbf{D} \bigcirc$ Less than
$\mathrm{E} \bigcirc$ Equal to
$\triangleright T_{x}$ is $\ldots . . M_{b}{ }^{*} \mathrm{~g}$.
7. $\mathbf{A} \bigcirc$ True
$B \bigcirc$ False
$\mathbf{C} \bigcirc$ Greater than
$\mathbf{D} \bigcirc$ Less than
E \bigcirc Equal to
$\triangleright M_{c}$ is moving to the right.
8. A True

B
False
$\mathbf{C} \bigcirc$ Greater than
$\mathbf{D} \bigcirc$ Less than
$\mathbf{E} \bigcirc$ Equal to
\triangleright The magnitude of the total force on M_{c} is 0 .
9. $\mathbf{A} \bigcirc$ True
$\mathrm{B} \bigcirc$ False
$\mathbf{C} \bigcirc$ Greater than
$\mathbf{D} \bigcirc$ Less than
$\mathrm{E} \bigcirc$ Equal to
$\triangleright T_{w}$ is $\ldots . T_{y}$.
10. $\mathbf{A} \bigcirc$ True
$\mathbf{B} \bigcirc$ False
$\mathrm{C} \bigcirc$ Greater than
$\mathbf{D} \bigcirc$ Less than
$\mathbf{E} \bigcirc$ Equal to
$\triangleright M_{b}$ accelerates upward.
11. A \bigcirc True
$\rightarrow T_{x}=T_{y}$ b/c the pulley is frictionless. $\rightarrow T_{x}=M_{b} \cdot g$ b/c the acceleration is zero.
\rightarrow The system is moving to the right $b / c M_{a}>M_{b} \quad\left(M_{a}=3.5 \mathrm{~kg} ; M_{b}=2.0 \mathrm{~kg}\right)$
$\rightarrow F_{\text {net }}=0$ on $M_{c} \quad b / c \quad a=0$
$\rightarrow T_{w}>T_{y}$ because $T_{y}+f_{k}=T_{z}=T_{w}$
$\rightarrow a=0 \quad b / c$ the system is moving with constant velocity

3 pt There are 148 steps between the ground floor and the sixth floor in a building. Each step is 16.4 cm tall. It takes 4 minutes and 22 seconds for a person with a mass of 89.2 kg to walk all the way up. How much work did the person do?

(in J)				
12.	$\mathbf{A} \bigcirc 1.33 \times 10^{4}$	$\mathbf{B} \bigcirc 1.55 \times 10^{4}$	$\mathbf{C} \bigcirc 1.82 \times 10^{4}$	$\mathbf{D} \bigcirc 2.12 \times 10^{4}$
$\mathbf{E} \bigcirc 2.48 \times 10^{4}$	$\mathbf{F} \bigcirc 2.91 \times 10^{4}$	$\mathbf{G} \bigcirc 3.40 \times 10^{4}$	$\mathbf{H} \bigcirc 3.98 \times 10^{4}$	

$3 p t$ What was the average power performed by the person during the walk? (in W)
13. $\mathbf{A} \bigcirc 3.70 \times 10^{1} \quad \mathbf{B} \bigcirc 4.33 \times 10^{1} \quad \mathbf{C} \bigcirc 5.06 \times 10^{1} \quad \mathbf{D} \bigcirc 5.92 \times 10^{1}$
$\mathbf{E} \bigcirc 6.93 \times 10^{1}$
F $\bigcirc 8.11 \times 10^{1}$
$\mathbf{G} \bigcirc 9.48 \times 10^{1}$
$\mathbf{H} \bigcirc 1.11 \times 10^{2}$
$w=m g h=m g \cdot N_{4}=89.2 \cdot 9.81$.
$.148 \cdot 0.164=2.12 \cdot 10^{4} \mathrm{~J}$
$P=\frac{w}{t}=\frac{2.12 \cdot 10^{4}}{262}=81.1 \mathrm{~W}$

5 pt An airplane is flying with a speed of $205 \mathrm{~km} / \mathrm{h}$ at a height of 2270 m above the ground. A parachutist whose mass is 76.5 kg , jumps out of the airplane, opens the parachute and then lands on the ground with a speed of 3.15 m / s. How much energy was dissipated on the parachute by the air friction? (in MJ)
14. $\mathrm{A} \bigcirc$ $\mathrm{E} \bigcirc$
5.99×10^{-1}
B 8.69×10^{-1}
$\mathrm{C} \bigcirc$ 1.26

Db 1.833.84
$\mathbf{G} \bigcirc 5.57$
$\mathbf{H} \bigcirc 8.08$

Energy balance:

$$
\begin{aligned}
& P E_{i}+K E_{i}=P E_{f}+K E_{f}+\Delta E_{t h} \\
& P E_{i}+K E_{i}-K E_{f}=\Delta E_{t h} \\
& \Delta E_{t h}=m g h+\frac{1}{2} m v_{i}^{2}-\frac{1}{2} m v_{f}^{2}= \\
& =76.5 \cdot 9.81 \cdot 2270+\frac{1}{2} \cdot 76.5 \cdot 56.94^{2}- \\
& -\frac{1}{2} 76.5 \cdot 3.15^{2}=1.83 \mathrm{MJ}
\end{aligned}
$$

4 pt A 610 kg automobile slides across an icy street at a speed of $59.7 \mathrm{~km} / \mathrm{h}$ and collides with a parked car which has a mass of 855 kg . The two cars lock up and slide together. What is the speed of the two cars just after they collide? (in km / h)
15. $\mathbf{A} \bigcirc 1.59 \times 10^{1}$

B 1.99×10^{1}
$\mathrm{C} \bigcirc 2.49 \times 10^{1}$
D 3.11×10^{1}
E $\bigcirc 3.88 \times 10^{1}$
F
4.86×10^{1}
$\mathbf{G} \bigcirc 6.07 \times 10^{1}$
$\mathbf{H} \bigcirc .59 \times 10^{1}$

Conservation of (linear)momentum always applies to any kind of
collisions:

$$
\begin{aligned}
& \quad m_{1} \cdot v_{i}+m_{2} \cdot 0=\left(m_{1}+m_{2}\right) \cdot v_{f} \\
& \frac{m_{1}}{m_{1}+m_{2}} \cdot v_{i}=v_{f} \\
& v_{f}=\frac{610}{610+855} \cdot 59.7=24.9 \frac{\mathrm{~km}}{\mathrm{~h}}
\end{aligned}
$$

stay in km / h, don't convert to m / s !

The graph shows the x -displacement as a function of time for a particular object undergoing simple harmonic motion.

This function can be described by the following formula:
$\mathrm{x}(\mathrm{t})=\mathrm{A} \sin (\omega \mathrm{t})$, where x and A are measured in meters, t is measured in seconds, ω is measured in rad/s.
$2 p t$ Using the graph determine the amplitude A of the oscillation.
(in m)

16. $\mathbf{A} \bigcirc 7.00 \times 10^{-1}$	$\mathbf{B} \bigcirc 1.00$	$\mathbf{C} \bigcirc 1.30$	$\mathbf{D} \bigcirc 1.60$
$\mathbf{E} \bigcirc 2.20$	$\mathbf{F} \bigcirc 3.10$	$\mathbf{G} \bigcirc 3.40$	$\mathbf{H} \bigcirc 4.60$

$2 p t$ Determine the period T of the oscillation.
(in s)
17. $\mathbf{A} \bigcirc 2.60 \quad \mathbf{B} \bigcirc 3.80 \quad \mathbf{C} \bigcirc 4.20 \quad \mathbf{D} \bigcirc 5.00 \quad \mathbf{E} \bigcirc 5.40 \quad \mathbf{F} \bigcirc 6.60 \quad \mathbf{G} \bigcirc 7.40 \quad \mathbf{H} \bigcirc 8.20$
$4 p t$ A thin circular hoop with radius r and mass m is suspended vertically by two thin strings, A and B as shown in the figure. The center of the mass of the hoop is at the same height as the point P where string B is attached.

Hoop: $I_{C M}=m r^{2}$ Parallel axis theorem:

$$
I_{P}=I_{C M}+m r^{2}=2 m r^{2}
$$

Which of the equations below represents the initial angular acceleration α of the hoop when the string A is cut? (Hint: Use the parallel axis theorem.)
18. $\mathrm{A} \bigcirc m g r$
$\mathbf{B} \bigcirc(2 g) / r$
$\mathbf{C} \bigcirc m g / r$
D $\bigcirc m g /(2 r)$
$\mathbf{E} \bigcirc g /(2 r)$
$\mathbf{F} \bigcirc g / r$
$\mathbf{G} \bigcirc m g r^{2}$
Rotational Newton's second law with respect to pivot P :

$$
\begin{aligned}
& \tau=I_{p} \cdot \alpha \\
& m g r=2 m r^{2} \cdot \alpha \\
& \frac{g}{2 r}=\alpha
\end{aligned}
$$

$6 p t$ A body (not shown) has its center of mass (CM) at the origin. In each case below give the direction for the torque τ with respect to the CM on the body due to force \mathbf{F} acting on the body at a location indicated by the vector r.

$\mathrm{C} \bigcirc \mathrm{Y}$
$\mathrm{D} \bigcirc-\mathrm{Y}$
Torque:
$\vec{\tau}=\vec{r} \times$
\vec{F} Right hand rule.

20. $\mathbf{A} \bigcirc \mathrm{X} \quad \mathrm{B} \bigcirc-\mathrm{X}$
$\mathrm{C} \bigcirc \mathrm{Y}$
$\mathrm{D} \bigcirc-\mathrm{Y}$
$\mathbf{E} \bigcirc \mathrm{Z} \quad \mathbf{F} \bigcirc-\mathrm{Z}$

$\begin{array}{lllll}\text { म } X \\ \text { 21. } \mathbf{A} \bigcirc X & \mathbf{B} \bigcirc-X \quad \mathbf{C} \bigcirc Y \quad \mathrm{D} \bigcirc-\mathrm{Y} & \mathbf{E} \bigcirc \mathrm{Z} & \mathbf{F} \bigcirc-\mathrm{Z}\end{array}$

A crate with a mass of $\mathrm{M}=73.5 \mathrm{~kg}$ is suspended by a rope from the midpoint of a uniform boom. The boom has a mass of $\mathrm{m}=137 \mathrm{~kg}$ and a length of $\mathrm{l}=9.12 \mathrm{~m}$. The end of the boom is supported by another rope which is horizontal and is attached to the wall as shown in the figure.

$2 p t$ The boom makes an angle of $\theta=56.4^{\circ}$ with the vertical wall. Calculate the tension in the vertical rope. (in N)
22. $\mathbf{A} \bigcirc 4.42 \times 10^{2}$

B 5.00×10^{2}
$\mathbf{C} \bigcirc 5.65 \times 10^{2}$
D 6.38×10^{2} $\begin{aligned} M g & =73.5 \cdot 9.81= \\ & =721 \mathrm{~N}\end{aligned}$
$3 p t$ What is the tension in the horizontal rope?
(in N)
23. $\mathbf{A} \bigcirc 8.79 \times 10^{2}$

B 1.17×10^{3}
CO 1.55×10^{3}
D 2.07×10^{3}
E $\bigcirc 2.75 \times 10^{3}$
F $\bigcirc 3.66 \times 10^{3}$
G $\bigcirc 4.86 \times 10^{3}$
$\mathbf{H} \bigcirc 6.47 \times 10^{3}$
Torque balance writ pivot P : $M g \cdot \frac{l}{2} \cdot \sin \theta+m g \cdot \frac{l}{2} \cdot \sin \theta=T \cdot l \cdot \cos \theta$
$\frac{1}{2}(M+m) g \tan \theta=T$

$$
T=\frac{1}{2}(73.5+137) \cdot 9.81 \cdot \tan \left(56.4^{\circ}\right)
$$

$$
T=1554 \mathrm{~N}
$$

5 pt Planet-X has a mass of $8.31 \times 10^{24} \mathrm{~kg}$ and a radius of 9300 km . What is the Escape Speed i.e. the minimum speed required for a satellite in order to break free permanently from the planet? (in km/s)
24. $\mathbf{A} \bigcirc 3.58$
$\mathbf{B} \bigcirc 4.47$
E $\bigcirc 8.73$
F〇 1.09×10^{1}
$\mathbf{G} \bigcirc 1.36 \times 10^{1}$
D $\bigcirc 6.99$
Escape
speed: $v_{\text {II }}=\sqrt{\frac{2 G M}{R}}$ $G=6.67 \cdot 10^{-11} \frac{\mathrm{Nm}^{2}}{\mathrm{~kg}}$
$M=8.31 \cdot 10^{24} \mathrm{~kg}$
$R=9300 \mathrm{~km}=9.3 \cdot 10^{6}$
$v_{\text {II }}=\sqrt{\frac{2 \cdot 6.67 \cdot 10^{-11} \cdot 8.31 \cdot 10^{22}}{9.3 \cdot 10^{6}}}$
$v_{\text {II }}=10,918 \frac{\mathrm{~m}}{\mathrm{~s}} \cong 10.9 \frac{\mathrm{~km}}{\mathrm{~s}}$
$2 p t$ Which one weighs more, one kilogram iron or one kilogram feather?
25.A \bigcirc It depends on the type of the iron and the feather.

They both weigh
$\mathbf{C} \bigcirc$ The iron weighs more.
D They weigh the same.
9.81 N .
$2 p t$ Which one displaces more water, one kilogram wood or one kilogram styrofoam?

B〇 The wood displaces more water.
\mathbf{C} It depends on the type of the wood and the styrofoam.
D \bigcirc The styrofoam displaces more water. they both displace 1 kg of water.
$2 p t$ Which one displaces more water, one kilogram iron or one kilogram styrofoam?
$\mathbf{2 7}$ A \bigcirc The styrofoam displaces more water.
B The iron displaces more water.
C \bigcirc It depends on the type of the iron and the styrofoam.
D They displace the same amount of water.

The styrofoam displaces 1 kg of water, because it floats on the surface. The iron displaces
water equivalent to its volume: $V=\frac{m}{S_{F e}}$. Since the density of iron
is greater than one $\left(\frac{k g}{e}\right)$, the displaced water is less than a kilogram.

4 pt A large tree trunk is floating in the sea. The density of the sea water is $1025 \mathrm{~kg} / \mathrm{m}^{3}$, the density of the trunk is $735 \mathrm{~kg} / \mathrm{m}^{3}$. What fraction of the trunk's volume is above the surface of the water?
$\begin{array}{lllll}\text { 28. } \mathbf{A} \bigcirc 0.242 & \mathrm{~B} \bigcirc 0.283 & \mathbf{C} \bigcirc 0.331 & \mathrm{D} \bigcirc 0.387 \\ \mathbf{E} \bigcirc 0.453 & \mathrm{~F} \bigcirc 0.530 & \mathrm{G} \bigcirc 0.620 & \mathbf{H} \bigcirc 0.726\end{array}$

water: $\rho_{w}=1025 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$
trunk: $\rho_{t}=735 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$
volume: $V=V_{\text {in }}+V_{\text {out }}$
Archimedes:

$$
B=m_{w} \cdot g=s_{w} \cdot V_{i n} \cdot g
$$

Floating on the surface:

$$
\begin{aligned}
& m_{t} \cdot g=B \\
& S_{t} \cdot V \cdot g=S_{w} \cdot V_{i n} \cdot g
\end{aligned}
$$

$\left.s_{t}=V_{i n}\right\}$ fraction of volume in the water
Fraction of volume out: $1-\frac{V_{\text {in }}}{V}=$

$$
=1-\frac{S_{t}}{S_{w}}=1-\frac{735}{1025}=0.283
$$

6 pt The figure illustrates flow through a pipe with diameters of 1 mm and 2 mm and with different elevations. p_{x} is the pressure in the pipe, and v_{x} is the speed of a non-viscous incompressible fluid at locations $\mathrm{x}=\mathrm{Q}, \mathrm{R}, \mathrm{S}, \mathrm{T}$, or U .

Select the correct answers.
$\triangleright \mathrm{p}_{\mathrm{Q}}$ is $\ldots \mathrm{p}_{\mathrm{T}}$
29. $\mathbf{A} \bigcirc$ Greater than
$\mathbf{B} \bigcirc$ Less than
$\mathbf{C} \bigcirc$ Equal to
$\triangleright \mathrm{p}_{\mathrm{Q}}$ is $\ldots \mathrm{p}_{\mathrm{U}}$.
30. A Greater than
$\mathbf{B} \bigcirc$ Less than
$\mathbf{C} \bigcirc$ Equal to
$\triangleright \mathrm{v}_{\mathrm{U}}$ is $\ldots 2 \mathrm{v}_{\mathrm{T}}$.
31. $\mathbf{A} \bigcirc$ Greater than
$\mathbf{B} \bigcirc$ Less than
$\mathbf{C} \bigcirc$ Equal to
$\rightarrow p_{Q}>p_{T} b / c$ pressure increases,
when you dive deeper into a
fluid (hydrostatic pressure) $\rightarrow \mathrm{P}_{Q}>\mathrm{P}_{u} \mathrm{~b} / \mathrm{c}$ the pressure increases, when the fluid slows down (Bernoulli Principle)
$\rightarrow v_{u}>2 v_{T}$ b/c $v_{u}=4 v_{T}$ due to Continuity: $v_{u} A_{u}=v_{T} A_{T}$ and $A_{T}=4 A_{u} \quad b / c \quad d_{T}=2 d_{u}$ (Circle area: $A=\pi r^{2}=\frac{\pi d^{2}}{4}$)

4 pt A truck horn emits a sound with a frequency of 240 Hz . The truck is moving on a straight road with a constant speed. If a person standing on the side of the road hears the horn at a frequency of 226 Hz , then what is the speed of the truck? Use $340 \mathrm{~m} / \mathrm{s}$ for the speed of the sound.

$$
(i n \mathrm{~m} / \mathrm{s})
$$

32. $\mathbf{A} \bigcirc 4.76$
$\mathbf{B} \bigcirc 6.91$
F $\bigcirc 3.05 \times 10^{1}$
$\mathrm{C} \bigcirc 1.00 \times 10^{1}$
D 1.45×10^{1}
G
4.43×10^{1}
$\mathbf{H} \bigcirc 6.42 \times 10^{1}$
$\left.\begin{array}{l}\text { source: } f_{s}=240 \mathrm{~Hz} \\ \text { observed: } f_{\sigma}=226 \mathrm{~Hz}\end{array}\right\}$ down-shift
observer: $v_{\sigma}=0 \mathrm{~m} / \mathrm{s}$: at rest
source: $v_{s}=$?
sound : $c=340 \mathrm{~m} / \mathrm{s}$
Doppler effect: $f_{\sigma}=f_{s} \cdot \frac{c \pm v_{\sigma}}{c \pm v_{s}}$
$f_{\sigma}=f_{s} \cdot \frac{c}{c+v_{s}}$
$c f_{\sigma}+v_{s} f_{\sigma}=c f_{s}$

$$
\begin{gathered}
v_{s} f_{\sigma}=c f_{s}-c f_{\sigma} \\
v_{s}=c \frac{f_{s}-f_{\sigma}}{f_{\sigma}} \\
v_{s}=340 \cdot \frac{240-226}{226}=21.1 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{gathered}
$$

$3 p t$ A bimetallic strip is held fixed at the bottom end as shown in the figure.

The metal on the left has a coefficient of linear heat expansion of $\alpha_{\text {left }}=3.65 \times 10^{-5} 1 / \mathrm{K}$, the metal on the right has $\alpha_{\text {right }}=1.19 \times 10^{-5} 1 / \mathrm{K}$. When the strip is cooled, it will \ldots (complete the sentence)
33.A \bigcirc... remain straight.

B \bigcirc... bend right.
C $\bigcirc \ldots$ bend left.
$\alpha_{\text {left }}=$

$$
\begin{aligned}
& \alpha_{\text {right }}= \\
= & 1.19 \cdot 10^{-5} \frac{1}{k}
\end{aligned}
$$

Since $\alpha_{\text {left }}>\alpha_{\text {right }}$, the metal on the left contracts more, when the strip is cooled. Therefore left.

4 pt A 23.2 liter gas bottle contains 4.49×10^{23} Xenon molecules at a temperature of 378 K . What is the thermal energy of the gas?
(in J)
34. $\mathbf{A} \bigcirc 3.51 \times 10^{3}$

B 5.10×10^{3}
$\mathbf{C} \bigcirc 7.39 \times 10^{3}$
D 1.07×10^{4}
$\mathbf{E} \bigcirc 1.55 \times 10^{4}$$2.25 \times 10^{4}$
G
3.27×10^{4}
$\mathbf{H} \bigcirc 4.74 \times 10^{4}$

$$
\begin{aligned}
& N=4.49 \cdot 10^{23} \\
& T=378 \mathrm{~K} \\
& \text { Xenon: } f=3 \quad \text { (single atom molecule } \\
& \text { noble gas) } \\
& U=\frac{f}{2} N k_{B} T \\
& U=\frac{3}{2} \cdot 4.49 \cdot 10^{23} \cdot 1.38 \cdot 10^{-23} \cdot 378 \\
& U=3513 \mathrm{~J}
\end{aligned}
$$

4 pt What is the temperature of 1.08 moles of Nitrogen gas inside a 6.16 liter container, if the pressure of the gas is 10.5 atm ?
(in K)
35. A
$\mathbf{A} \bigcirc 243.3$
B
284.6

C $\bigcirc 333.0$
$\mathbf{D} \bigcirc 389.6$
$\mathrm{E} \bigcirc$
455.8

F $\bigcirc 533.3$
$\mathbf{G} \bigcirc 624.0$
H○ 730.1
$n=1.08 \mathrm{~mol} \quad R=8.31 \frac{\mathrm{~J}}{\mathrm{molK}}$
$V=6.16 \mathrm{l}=0.00616 \mathrm{l} \quad \mathrm{l}$
$P=10.5 \mathrm{~atm}=1.064 \cdot 10^{6} \mathrm{~Pa}$
I deal gas law: $\mathrm{PV}=n R T$
$T=\frac{p V}{n R}$
$T=\frac{1.064 \cdot 10^{6} \cdot 0.00616}{1.08 \cdot 8.31}=730 \mathrm{~K}$

4 pt An ideal heat-engine is to be used in an environment where the ambient temperature is $32.5^{\circ} \mathrm{C}$. What should be the minimum temperature of the hot heat reservoir in order to reach at least 41.2 percent efficiency with the heat-engine? (Give your answer in Celsius.)
36. $\mathbf{A} \bigcirc 1.70 \times 10^{2}$

B $\bigcirc 2.47 \times 10^{2}$
$\mathbf{C} \bigcirc 3.58 \times 10^{2}$
D $\bigcirc 5.18 \times 10^{2}$
$\mathbf{E} \bigcirc 7.52 \times 10^{2}$
FO 1.09×10^{3}
G \bigcirc
1.58×10^{3}
$\mathbf{H} \bigcirc 2.29 \times 10^{3}$

$$
\begin{aligned}
& \eta=41.2 \%=0.412 \\
& T_{c}=32.5^{\circ} \mathrm{C}=305.5 \mathrm{~K}
\end{aligned}
$$

Heat engine efficiency:

$$
\begin{aligned}
& \eta=\frac{T_{H}-T_{C}}{T_{H}} \\
& \eta T_{H}=T_{H}-T_{C}
\end{aligned}
$$

$T_{C}=T_{H}-\eta T_{H}$
$\frac{T_{C}}{1-\eta}=T_{H}$
$T_{H}=\frac{305.5}{1-0.412}=519.6 \mathrm{~K}=246.6^{\circ} \mathrm{C}$

