Nagy,

Tibor

Keep this exam CLOSED until advised by the instructor.

50 minute long closed book exam.
Fill out the bubble sheet: last name, first initial, student number (PID). Leave the section, code, form and signature areas empty.

Three two-sided handwritten 8.5 by 11 help sheets are allowed.
When done, hand in your test and your bubble sheet.
Thank you and good luck!
Posssibly useful constants:

- $\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2}$
- $\mathrm{G}=6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$
- $\rho_{\text {water }}=1000 \mathrm{~kg} / \mathrm{m}^{3}=1 \mathrm{~kg} / \mathrm{l}=1 \mathrm{~g} / \mathrm{cm}^{3}$
- $1 \mathrm{~atm}=101.3 \mathrm{kPa}=760 \mathrm{mmHg}$
- $\mathrm{N}_{\mathrm{A}}=6.02 \times 10^{23} 1 / \mathrm{mol}$
- $\mathrm{R}=8.31 \mathrm{~J} /(\mathrm{molK})$
- $\mathrm{k}_{\mathrm{B}}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
- $0{ }^{\circ} \mathrm{C}=273.15 \mathrm{~K}$

nagytibo@msu

Please, sit in row G.

$1 p t$ Are you sitting in the seat assigned?
1.A Yes, I am.

Practice Exam \#3

4 pt A 210 kg satellite is orbiting on a circular orbit 5155 km above the Earth's surface. Determine the speed of the satellite. (The mass of the Earth is $5.97 \times 10^{24} \mathrm{~kg}$, and the radius of the Earth is 6370 km .) (in km/s)
2.
$\mathrm{A} \bigcirc$
2.29
$\mathbf{B} \bigcirc 2.68$
$\mathbf{C} \bigcirc 3.14$
$\mathbf{D} \bigcirc 3.67$
$\mathbf{E} \bigcirc 4.29$

$R=6370 \mathrm{~km}$ $h=5155 \mathrm{~km}$ $\begin{aligned} r=R+h & =11.525 \mathrm{~km}= \\ & =11.525 \cdot 10^{6} \mathrm{~m}\end{aligned}$

Practice Exam \#3

4 pt The paths of two small sattellites, $\mathrm{M}_{\mathrm{L}}=6.00 \mathrm{~kg}$ and $\mathrm{M}_{\mathrm{R}}=9.00 \mathrm{~kg}$, are shown below, drawn to scale, with M_{L} corresponding to the orbit on the left hand side in the figure. They orbit in the same plane around a massive star, as shown below.
 law:

$$
\frac{T_{R}^{2}}{T_{L}^{2}}=\frac{a_{R}^{3}}{a_{L}^{3}}
$$

The period of M_{L} is 26.0 years. Calculate the period of M_{R}, in years.
3. $\quad \mathbf{A} \bigcirc 4.45 \times 10^{1}$

B 6.45×10^{1}
$\mathbf{C} \bigcirc 9.36 \times 10^{1}$
D 1.36×10^{2}
$\mathrm{E} \bigcirc$
1.97×10^{2}
Ff 2.85×10^{2}
G \bigcirc
4.14×10^{2}
$\mathrm{H} \bigcirc 6.00 \times 10^{2}$

$$
\begin{aligned}
& \frac{T_{R}^{2}}{T_{L}^{2}}=\frac{a_{R}^{3}}{a_{L}^{3}}=\frac{\left(2 a_{R}\right)^{3}}{\left(2 a_{L}\right)^{3}} \\
& T_{R}=T_{L} \cdot \sqrt{\left(\frac{2 a_{R}}{2 a_{L}}\right)^{3}} \\
& T_{R}=26 \mathrm{yrs} \cdot \sqrt{\left(\frac{11}{6}\right)^{3}}=64.5 \mathrm{yrs}
\end{aligned}
$$

4 pt Glucose solution is administered to a patient in a hospital. The density of the solution is $1.336 \mathrm{~kg} / \mathrm{l}$. If the blood pressure in the vein is 39.2 mmHg , then what is the minimum necessary height of the IV bag above the position of the needle? (in cm)
4. \qquad 16.9

B

22.5

E $\bigcirc 53.0$
F70.5
$\mathbf{C} \bigcirc 30.0$
D $\bigcirc 39.9$
$\mathbf{G} \bigcirc 93.8$
H 124.7

$$
\begin{aligned}
& S=1.336 \frac{\mathrm{~kg}}{\mathrm{l}}=1336 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \\
& P=39.2 \mathrm{mmHg}=5225 \mathrm{~Pa} \\
& \text { (If } 760 \mathrm{mmHg}=101,300 \mathrm{~Pa}, \\
& \text { then } 1 \mathrm{mmHg}=133.3 \mathrm{~Pa} \text {) }
\end{aligned}
$$

Hydrostatic pressure:

$$
\begin{aligned}
& p=s g h \Rightarrow h=\frac{p}{9 g} \\
& h=\frac{5225}{1336 \cdot 9.81}=0.399 \mathrm{~m}=39.9 \mathrm{~cm}
\end{aligned}
$$

3 pt A large ice cube floats in a glass of water.

A melting ice cube doesn't change the water level.
What happens to the water level, when the ice cube melts? (No water is lost due to evaporation.)
5.A \bigcirc The water level will fall.
$\mathbf{B} \bigcirc$ The water level will rise.
C \bigcirc It depends on how much water we have in the glass, and how big the ice cube is.
D The water level will not change.
$3 p t$ A large ice cube floats in a glass of water.

There is a steel bolt frozen inside the ice cube. What happens to the water level when all the ice melts? (No water is lost due to evaporation.)
6.A○ The water level will fall.

B The water level will rise.
C \bigcirc Without knowing the mass of the bolt, we cannot answer this question.
$\mathbf{D} \bigcirc$ The water level will not change.
Move the bolt to the top of the ice cube. Toss the bolt in to the
water. The water level will fall.
(see the boat on pond question.) Then let the ice cube melt. The
melting ice cube doesn't change the water level.

Practice Exam \#3

8 pt The figure illustrates the flow of an ideal fluid through a pipe of circular cross section, with diameters of 1 cm and 2 cm and with different elevations. p_{x} is the pressure in the pipe, and v_{x} is the speed of the fluid at locations $\mathrm{x}=$ q, r, s, t, or u.

$\triangleright \mathrm{p}_{\mathrm{r}}$ is $\ldots . \mathrm{p}_{\mathrm{s}}$
7. ${ }^{\mathrm{A}} \bigcirc$ Greater than
$\mathrm{B} \bigcirc$ Less than
$\mathbf{C} \bigcirc$ Equal to
$\begin{array}{lll}\triangleright p_{u} \text { is } \ldots p_{q} \\ \mathbf{8} .{ }^{\mathbf{A} \bigcirc \text { Greater than }} & \mathbf{B} \bigcirc \text { Less than } & \mathbf{C} \bigcirc \text { Equal to } \\ \triangleright \mathrm{y}_{\mathrm{q}} \text { is } \ldots 2 \mathrm{v}_{\mathrm{s}} \\ \mathbf{9}{ }^{\mathbf{A} \bigcirc \text { Greater than }} & \mathbf{B} \bigcirc \text { Less than } & \mathbf{C} \bigcirc \text { Equal to }\end{array}$
$\triangleright \mathrm{v}_{\mathrm{u}}$ is $\ldots . \mathrm{v}_{\mathrm{r}}$
10. $\mathbf{A} \bigcirc$ Greater than
\#7: When the fluid speeds up, its pressure drops.
\#8: When you climb in a fluid, the pressure drops. (When you dive deeper in a fluid, the pressure increases.

$$
\begin{aligned}
\# 9: v_{q} & >2 v_{s} \quad b / c \quad v_{q}=4 v_{s} \\
A_{q} & =\frac{1}{4} A_{s} \text { and } \quad v_{q} A_{q}=v_{s} A_{s} \\
\# 10: v_{u} & =v_{r} \quad b / c \quad A_{u}=A_{r}
\end{aligned}
$$

4 pt A rock band uses a wall built out of 37 identical speakers. If one single speaker can produce a sound level of 95.5 dB in the front row area, then what is the sound level produced by the whole wall?
(in dB) (in dB)
$\begin{array}{llll}\text { 11. } \mathbf{A} \bigcirc 59.3 & \mathbf{B} \bigcirc 69.4 & \mathbf{C} \bigcirc 81.2 & \mathbf{D} \bigcirc 95.0 \\ \mathbf{E} \bigcirc 111.2 & \mathbf{F} \bigcirc 130.1 & \mathbf{G} \bigcirc 152.2 & \mathbf{H} \bigcirc 178.1\end{array}$
Intensity from one speaker: I_{1} Intensity from 37 speakers: I_{37} Conservation of energy: $I_{37}=37 \cdot I_{1}$ Sound level of one speaker: β_{1}

$$
\beta_{1}=10 \cdot \log \left(\frac{I_{1}}{I_{0}}\right)=95.5 \mathrm{~dB}
$$

sound level of 37 speakers: β_{37}

$$
\begin{aligned}
& \beta_{37}=10 \cdot \log \left(\frac{I_{37}}{I_{0}}\right)=10 \cdot \log \left(\frac{37 \cdot I_{1}}{I_{0}}\right)= \\
= & 10 \cdot\left[\log (37)+\log \left(\frac{I_{1}}{I_{0}}\right)\right]= \\
= & 10 \log (37)+10 \cdot \log \left(\frac{I_{1}}{I_{0}}\right)= \\
= & 15.7+95.5=111.2 \mathrm{~dB}
\end{aligned}
$$

Practice Exam \#3

4 pt A stationary horn emits a sound with a frequency of 205 Hz . A car is moving away from the horn on a straight road with constant speed. If the driver of the car hears the horn at a frequency of 185 Hz , then what is the speed of the car? Use $340 \mathrm{~m} / \mathrm{s}$ for the speed of the sound.

$$
(i n \mathrm{~m} / \mathrm{s})
$$

12. $\mathbf{A} \bigcirc 2.30 \times 10^{1}$

B 2.60×10^{1}
$\mathbf{C} \bigcirc 2.94 \times 10^{1}$
D 3.32×10^{1}
E $\bigcirc 3.75 \times 10^{1}$
F $\bigcirc 4.24 \times 10^{1}$
$\mathbf{G} \bigcirc 4.79 \times 10^{1}$
H $\bigcirc 5.41 \times 10^{1}$
Doppler effect:

$$
f_{\sigma}=f_{s} \cdot \frac{c \pm v_{\sigma}}{c \pm v_{s}}
$$

$$
\mathrm{c}=340 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Stationary horn: $v_{s}=0 \frac{\mathrm{~m}}{\mathrm{~s}}$
source frequency: $f_{s}=205 \mathrm{~Hz}$
Observed frequency: $f_{\sigma}=185 \mathrm{~Hz}$
The shift is down, we need a fraction

$$
\begin{aligned}
& \text { less than one: } \\
& f_{\sigma}=f_{s} \cdot \frac{c-v_{\sigma}}{c} \\
& c f_{\sigma}=c f_{s}-v_{\sigma} f_{s} \\
& v_{\sigma} f_{s}=c f_{s}-c f_{\sigma} \\
& v_{\sigma}=c \frac{f_{s}-f_{\sigma}}{f_{s}} \\
& v_{\sigma}=340 \cdot \frac{205-185}{205} \\
& v_{\sigma}=33.2 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

4 pt A pipe is 1.70 m long and it is open at both ends. What are the frequencies of the lowest three harmonics produced by this pipe? The speed of sound is $340 \mathrm{~m} / \mathrm{s}$. Only one answer is correct.
13.A $\bigcirc 100 \mathrm{~Hz}, 200 \mathrm{~Hz}, 300 \mathrm{~Hz}$
$\mathbf{B} \bigcirc 100 \mathrm{~Hz}, 300 \mathrm{~Hz}, 500 \mathrm{~Hz}$
$\mathbf{C} \bigcirc 50 \mathrm{~Hz}, 100 \mathrm{~Hz}, 150 \mathrm{~Hz}$
$\mathbf{D} \bigcirc 50 \mathrm{~Hz}, 100 \mathrm{~Hz}, 200 \mathrm{~Hz}$
$\mathbf{E} \bigcirc 50 \mathrm{~Hz}, 150 \mathrm{~Hz}, 250 \mathrm{~Hz}$
$\mathbf{F} \bigcirc 200 \mathrm{~Hz}, 400 \mathrm{~Hz}, 600 \mathrm{~Hz}$
$\mathbf{G} \bigcirc 200 \mathrm{~Hz}, 600 \mathrm{~Hz}, 1000 \mathrm{~Hz}$
$\mathbf{H} \bigcirc 200 \mathrm{~Hz}, 300 \mathrm{~Hz}, 400 \mathrm{~Hz}$

An open-open pipe holds a half wave as the lowest mode:
 waves in an open-open pipe go as : $f_{n}=n \cdot f_{1}$ where $n=1,2,3,4,5 \ldots$ Therefore the frequencies are: $100 \mathrm{~Hz}, 200 \mathrm{~Hz}, 300 \mathrm{~Hz}, 400 \mathrm{~Hz}, 500 \mathrm{~Hz}$

Practice Exam \#3
$3 p t$ A bimetallic strip is held fixed at the bottom end as shown in the figure.

The metal on the left has a coefficient of linear heat expansion of $\alpha_{\text {left }}=1.50 \times 10^{-5} 1 / \mathrm{K}$, the metal on the right has $\alpha_{\text {right }}=3.85 \times 10^{-5} 1 / \mathrm{K}$. When the strip is heated, it will \ldots (complete the sentence)
14.A \bigcirc... bend right. B $\bigcirc \ldots$ remain straight.
$\mathbf{C} \bigcirc \ldots$ bend left.
When the strip is heated:

because $\alpha_{r}>\alpha_{l}$
: the right side
than the left side.

Practice Exam \#3

4 pt 5.20 liters of Nitrogen gas at $70.0^{\circ} \mathrm{C}$ temperature and 2.90 atm pressure contains how many moles?
15. $\mathbf{A} \bigcirc 0.257$
$\mathrm{E} \bigcirc 0.420$
$\mathbf{F} \bigcirc 0.474$
,
$2 p t$ A gas bottle contains 8.44×10^{23} Methane molecules at a temperature of 349 K . What is the thermal energy of the gas?
(in J)
16. $\mathbf{A} \bigcirc 1.22 \times 10^{4}$

B 1.38×10^{4}
$\mathbf{C} \bigcirc 1.56 \times 10^{4}$
D 1.76×10^{4}
E $\bigcirc 1.99 \times 10^{4}$
FO 2.25×10^{4}
$\mathbf{G} \bigcirc 2.54 \times 10^{4}$
$\mathbf{H} \bigcirc 2.87 \times 10^{4}$

2 pt On average how much energy is stored by ONE degree of freedom for ONE single molecule?
(in J)
17. $\mathbf{A} \bigcirc 2.41 \times 10^{-21}$

B $\bigcirc 3.01 \times 10^{-21}$
$\mathbf{C} \bigcirc 3.76 \times 10^{-21}$
D $\bigcirc 4.71 \times 10^{-21}$
E $\bigcirc 5.88 \times 10^{-21}$
F $\bigcirc 7.35 \times 10^{-21}$
$\mathbf{G} \bigcirc 9.19 \times 10^{-21}$
$\mathbf{H} \bigcirc 1.15 \times 10^{-20}$

Printed from LON-CAPA@MSU
Licensed under GNU General Public License

$$
\begin{aligned}
& T=349 \mathrm{~K} \\
& \epsilon=\frac{1}{2} k_{B} T=\frac{1}{2} \cdot 1.38 \cdot 10^{-23} \frac{\mathrm{~J}}{\mathrm{~K}} \cdot 349 \mathrm{~K} \\
& \epsilon=2.41 \cdot 10^{-21} \mathrm{~J} \\
& \text { Methane:CH }: H \\
& E_{t h}=\frac{f}{2} N k_{B} T=f N \epsilon \\
& E_{t h}=6 \cdot 8.44 \cdot 10^{23} \cdot 2.41 \cdot 10^{-21} \\
& E_{t h}=1.22 \cdot 10^{4} \mathrm{~J}
\end{aligned}
$$

