Nagy,

Please, sit in row J.

Tibor

Keep this exam CLOSED until advised by the instructor.
50 minute long closed book exam.
Fill out the bubble sheet: last name, first initial, student number. Leave the section, code and form areas empty.

1 pt Are you sitting in the seat assigned?
1.A \bigcirc Yes, I am.

A two-sided handwritten 8.5 by 11 help sheet is allowed.
When done, hand in your test and your bubble sheet.
Thank you and good luck!
Posssibly useful constant:

- $\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2}$
$4 p t$ A tennis ball is tossed straight up into the air. It flies up, it reaches the peak position, and then it falls back down. What can we tell about the ball's velocity and acceleration, when the ball is at the peak of its trajectory? (Only one answer is correct.)
2.A The velocity points down, and the acceleration is zero.
$\mathbf{B} \bigcirc$ The velocity points up, and the acceleration points down.
$\mathbf{C} \bigcirc$ Both the velocity and the acceleration point up.
$\mathbf{D} \bigcirc$ The velocity is zero, and the acceleration points up.
$\mathbf{E} \bigcirc$ Both the velocity and the acceleration are zero.
$\mathbf{F} \bigcirc$ Both the velocity and the acceleration point down.
$\mathbf{G} \bigcirc$ The velocity points up, and the acceleration is zero.
$\mathbf{H} \bigcirc$ The velocity is zero, and the acceleration points down.
$\mathbf{I} \bigcirc$ The velocity points down, and the acceleration points up.
$4 p t$ A large rock is released from rest from the top of a tall building. The average speed of the rock during the first second of the fall is $5 \mathrm{~m} / \mathrm{s}$. What is the average speed of the rock during the third second? (In this question we use the approximate value of $10 \mathrm{~m} / \mathrm{s}^{2}$ for the gravitational acceleration.)

```
\(\mathbf{3 . A} \bigcirc 15 \mathrm{~m} / \mathrm{s}\)
    \(\mathbf{B} \bigcirc 5 \mathrm{~m} / \mathrm{s}\)
    \(\mathbf{C} \bigcirc 30 \mathrm{~m} / \mathrm{s}\)
    D \(\bigcirc 0 \mathrm{~m} / \mathrm{s}\)
    \(\mathbf{E} \bigcirc 100 \mathrm{~m} / \mathrm{s}\)
    F \(\bigcirc 20 \mathrm{~m} / \mathrm{s}\)
    G \(\bigcirc 25 \mathrm{~m} / \mathrm{s}\)
    \(\mathbf{H} \bigcirc 50 \mathrm{~m} / \mathrm{s}\)
    \(\mathbf{I} \bigcirc 10 \mathrm{~m} / \mathrm{s}\)
```

$4 p t$ A small, single engine airplane is about to take off. The airplane becomes airborne, when its speed reaches 115.0 km / h. The conditions at the airport are ideal, there is no wind. When the engine is running at its full power, the acceleration of the airplane is $2.60 \mathrm{~m} / \mathrm{s}^{2}$. What is the minimum required length of the runway?

$$
(i n \mathrm{~m})
$$

5. $\mathbf{A} \bigcirc 6.54 \times 10^{1} \quad \mathbf{B} \bigcirc 7.65 \times 10^{1} \quad \mathbf{C} \bigcirc 8.95 \times 10^{1}$

D 1.05×10^{2}
$\mathbf{E} \bigcirc 1.23 \times 10^{2}$
$\mathbf{F} \bigcirc 1.43 \times 10^{2}$
G $\bigcirc 1.68 \times 10^{2}$
$\mathbf{H} \bigcirc 1.96 \times 10^{2}$
$4 p t$ A rescue helicopter is called to a car accident. The helicopter is stationed at an air base marked with B on the map.

The helicopter takes off and flies to the accident on a straight line. The accident is labeled with an A. The helicopter picks up the patient and flies to the hospital on a straight line. The hospital is labeled with an H . What is the magnitude of helicopter's displacement after it lands at the hospital?
(in km)

$$
\begin{array}{lllll}
\text { 6. } & \mathbf{A} \bigcirc 1.83 \times 10^{1} & \mathbf{B} \bigcirc 2.29 \times 10^{1} & \mathbf{C} \bigcirc 2.86 \times 10^{1} \\
\mathbf{D} \bigcirc 3.58 \times 10^{1} & \mathbf{E} \bigcirc 4.47 \times 10^{1} & \mathbf{F} \bigcirc 5.59 \times 10^{1} \\
\mathbf{G} \bigcirc 6.99 \times 10^{1} & \mathbf{H} \bigcirc 8.73 \times 10^{1} &
\end{array}
$$

$5 p t$ A baseball is projected horizontally with an initial speed of $29.4 \mathrm{~m} / \mathrm{s}$ from a height of 2.03 m . At what horizontal distance will the ball hit the ground? (Neglect air friction.)
(in m)

$$
\begin{array}{llll}
\text { 7. } & \mathbf{A} \bigcirc 1.89 \times 10^{1} & \mathbf{B} \bigcirc 2.52 \times 10^{1} & \mathbf{C} \bigcirc 3.35 \times 10^{1} \\
\mathbf{D} \bigcirc 4.45 \times 10^{1} & \mathbf{E} \bigcirc 5.92 \times 10^{1} & \mathbf{F} \bigcirc 7.87 \times 10^{1} \\
\mathbf{G} \bigcirc 1.05 \times 10^{2} & \mathbf{H} \bigcirc 1.39 \times 10^{2} &
\end{array}
$$

4 pt Two forces $\mathbf{F}_{\mathbf{1}}=-5.90 \mathbf{i}+5.00 \mathbf{j}$ and $\mathbf{F}_{\mathbf{2}}=7.20 \mathbf{i}+3.50 \mathbf{j}$ are acting on an object. The forces are measured in newtons, \mathbf{i} and \mathbf{j} are the unit vectors. The magnitude of the object's acceleration is observed to be $3.50 \mathrm{~m} / \mathrm{s}^{2}$. What is the mass of the object?
(in kg)
8. $\quad \mathbf{A} \bigcirc 8.05 \times 10^{-1}$
$\mathbf{B} \bigcirc 1.01$
$\mathbf{C} \bigcirc 1.26$
$\mathbf{D} \bigcirc 1.57 \quad \mathbf{E} \bigcirc 1.97$
F〇 2.46
$\mathbf{G} \bigcirc 3.07 \quad \mathbf{H} \bigcirc 3.84$

An $\mathrm{m}=7.75 \mathrm{~kg}$ mass is suspended on a string which is pulled upward by a force of $\mathrm{F}=79.9 \mathrm{~N}$ as shown in the figure.

4 pt If the upward velocity of the mass is $2.25 \mathrm{~m} / \mathrm{s}$ right now, then what is the velocity 3.50 s later? (in m/s)
9. $\quad \mathbf{A} \bigcirc 3.02$
$\mathbf{B} \bigcirc 4.01$
$\mathbf{C} \bigcirc 5.34$
$\mathbf{D} \bigcirc 7.10$
E $\bigcirc 9.44$
F〇 1.26×10^{1}
G $\bigcirc 1.67 \times 10^{1}$
$\mathbf{H} 2.22 \times 10^{1}$
$10 \mathrm{pt} \mathrm{M}_{1}$ and M_{2} have equal masses and are connected as shown. T_{1} and T_{2} are the tensions in the rope. The pulley is frictionless and massless. The incline is frictionless and is at an angle of $\theta=30.0^{\circ}$ from the horizontal. The quantities $\mathrm{T}_{1}, \mathrm{~T}_{2}$ and g are magnitudes.

$\triangleright \mathrm{M}_{1} \mathrm{~g}$ is T_{1}
10. $\mathbf{A} \bigcirc$ greater than $\quad \mathbf{B} \bigcirc$ less than
$\mathbf{C} \bigcirc$ equal to
$\triangleright \mathrm{T}_{1}$ is $\ldots . \mathrm{M}_{2} \mathrm{~g}$
11. $\mathbf{A} \bigcirc$ greater than $\quad \mathbf{B} \bigcirc$ less than
$\mathbf{C} \bigcirc$ equal to
$\triangleright \mathrm{T}_{2}$ is $\ldots . \mathrm{M}_{2} \mathrm{~g} \sin (\theta)$
12. $\mathbf{A} \bigcirc$ greater than $\quad \mathbf{B} \bigcirc$ less than
$\mathbf{C} \bigcirc$ equal to
\triangleright The magnitude of the acceleration of M_{1} is \ldots. that of M_{2}
13. $\mathbf{A} \bigcirc$ greater than $\quad \mathbf{B} \bigcirc$ less than
$\mathbf{C} \bigcirc$ equal to
$\triangleright \mathrm{T}_{2}$ is $\ldots \mathrm{T}_{1}$
14. $\mathbf{A} \bigcirc$ greater than $\quad \mathbf{B} \bigcirc$ less than
$\mathbf{C} \bigcirc$ equal to

The radius of curvature of a highway exit is $\mathrm{r}=82.5 \mathrm{~m}$. The surface of the exit road is horizontal, not banked. (See figure.)

5 pt What is the minimum required value of the coefficient of static friction between the tires of the car and the surface of the road so that the car can safely exit the highway at a constant speed of $50.9 \mathrm{~km} / \mathrm{h}$ without sliding?

$$
\text { 15. } \begin{array}{llll}
\mathbf{A} \bigcirc 5.94 \times 10^{-2} & \mathbf{B} \bigcirc 7.89 \times 10^{-2} & \mathbf{C} \bigcirc 1.05 \times 10^{-1} \\
\mathbf{D} \bigcirc 1.40 \times 10^{-1} & \mathbf{E} \bigcirc 1.86 \times 10^{-1} & \mathbf{F} \bigcirc 2.47 \times 10^{-1} \\
\mathbf{G} \bigcirc 3.29 \times 10^{-1} & \mathbf{H} \bigcirc 4.37 \times 10^{-1} &
\end{array}
$$

Printed from LON-CAPA@MSU Licensed under GNU General Public License

