Nagy,

Please, sit in row J.

Tibor

Keep this exam CLOSED until advised by the instructor.
50 minute long closed book exam.
Fill out the bubble sheet: last name, first initial, student number (PID). Leave the section, code, form and signature areas empty.

Three two-sided handwritten 8.5 by 11 help sheets are allowed.

When done, hand in your test and your bubble sheet.
Thank you and good luck!
Posssibly useful constants:

- $\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2}$
- $\mathrm{G}=6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$
- $\rho_{\text {water }}=1000 \mathrm{~kg} / \mathrm{m}^{3}=1 \mathrm{~kg} / \mathrm{l}=1 \mathrm{~g} / \mathrm{cm}^{3}$
- 1 atm $=101.3 \mathrm{kPa}=760 \mathrm{mmHg}$
- $\mathrm{N}_{\mathrm{A}}=6.02 \times 10^{23} 1 / \mathrm{mol}$
- $\mathrm{R}=8.31 \mathrm{~J} /(\mathrm{molK})$
- $\mathrm{k}_{\mathrm{B}}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
- $0{ }^{\circ} \mathrm{C}=273.15 \mathrm{~K}$

1 pt Are you sitting in the seat assigned?
1.A \bigcirc Yes, I am.
$3 p t$ The gravitational acceleration is $9.81 \mathrm{~m} / \mathrm{s}^{2}$ here on Earth at sea level. What is the gravitational acceleration at a height of 350 km above the surface of the Earth, where the International Space Station (ISS) flies? (The mass of the Earth is $5.97 \times 10^{24} \mathrm{~kg}$, and the radius of the Earth is 6370 km.)
$\mathbf{2 . A} \bigcirc$ It is twice of $9.81 \mathrm{~m} / \mathrm{s}^{2}$.
$\mathbf{B} \bigcirc$ It is somewhat less than $9.81 \mathrm{~m} / \mathrm{s}^{2}$.
$\mathbf{C} \bigcirc$ It is $9.81 \mathrm{~m} / \mathrm{s}^{2}$, the same.
$\mathbf{D} \bigcirc$ It is zero, since the ISS is in the state of weightlessness.
$\mathbf{E} \bigcirc$ It is half of $9.81 \mathrm{~m} / \mathrm{s}^{2}$.
$\mathbf{F} \bigcirc$ It is somewhat greater than $9.81 \mathrm{~m} / \mathrm{s}^{2}$.

3 pt A 153 kg satellite is orbiting Earth on a circular orbit with a speed of $5.17 \mathrm{~km} / \mathrm{s}$. Determine the height of the satellite above Earth's surface. (The mass of the Earth is $5.97 \times 10^{24} \mathrm{~kg}$, and the radius of the Earth is 6370 km .) (in km)
3. $\mathbf{A} \bigcirc 5.46 \times 10^{3}$
$\mathbf{B} \bigcirc 6.82 \times 10^{3}$
$\mathbf{C} 8.53 \times 10^{3}$
D 1.07×10^{4}
$\mathbf{E} \bigcirc 1.33 \times 10^{4}$
$\mathbf{F} \bigcirc 1.67 \times 10^{4}$
G $\bigcirc 2.08 \times 10^{4}$
$\mathbf{H} 2.60 \times 10^{4}$
$3 p t$ The paths of two small sattellites, $\mathrm{M}_{\mathrm{L}}=2.00 \mathrm{~kg}$ and $\mathrm{M}_{\mathrm{R}}=3.00 \mathrm{~kg}$, are shown below, drawn to scale, with M_{L} corresponding to the orbit on the left hand side in the figure. They orbit in the same plane around a massive star, as shown below.

The period of M_{L} is 36.0 years. Calculate the period of M_{R}, in years.
4.

$\mathbf{A} \bigcirc 2.02 \times 10^{1}$	$\mathbf{B} \bigcirc 2.92 \times 10^{1}$	$\mathbf{C} \bigcirc 4.24 \times 10^{1}$
$\mathbf{D} \bigcirc 6.15 \times 10^{1}$	$\mathbf{E} \bigcirc 8.91 \times 10^{1}$	$\mathbf{F} \bigcirc 1.29 \times 10^{2}$
$\mathbf{G} \bigcirc 1.87 \times 10^{2}$	$\mathbf{H} \bigcirc 2.72 \times 10^{2}$	

3 pt Glucose solution is administered to a patient in a hospital. The density of the solution is $1.202 \mathrm{~kg} / \mathrm{l}$. If the blood pressure in the vein is 41.4 mmHg , then what is the minimum necessary height of the IV bag above the position of the needle?
(in cm)

5.	$\mathbf{A} \bigcirc 32.4$	$\mathbf{B} \bigcirc 36.6$	$\mathbf{C} \bigcirc 41.4$	$\mathbf{D} \bigcirc 46.8$
$\mathbf{E} \bigcirc 52.9$	$\mathbf{F} \bigcirc 59.8$	$\mathbf{G} \bigcirc 67.5$	$\mathbf{H} \bigcirc 76.3$	

$2 p t$ Which one weighs more, one kilogram iron or one kilogram feather?
6.A \bigcirc The iron weighs more.
$\mathbf{B} \bigcirc$ They weigh the same.
$\mathbf{C} \bigcirc$ It depends on the type of the iron and the feather.
$\mathbf{D} \bigcirc$ The feather weighs more.
$2 p t$ Which one displaces more water, one kilogram wood or one kilogram styrofoam?
7.A \bigcirc They displace the same amount of water.
$\mathbf{B} \bigcirc$ The wood displaces more water.
$\mathbf{C} \bigcirc$ It depends on the type of the wood and the styrofoam.
$\mathbf{D} \bigcirc$ The styrofoam displaces more water.
$2 p t$ Which one displaces more water, one kilogram iron or one kilogram styrofoam?
8.A They displace the same amount of water.
$\mathbf{B} \bigcirc$ It depends on the type of the iron and the styrofoam.
$\mathbf{C} \bigcirc$ The iron displaces more water.
$\mathbf{D} \bigcirc$ The styrofoam displaces more water.

4 pt An Airbus A380-800 passanger airplane is cruising at constant altitude on a straight line with a constant speed. The total surface area of the two wings is $395 \mathrm{~m}^{2}$. The average speed of the air just below the wings is $243 \mathrm{~m} / \mathrm{s}$, and it is 271 m / s just above the surface of the wings. What is the mass of the airplane? The average density of the air around the airplane is $\rho_{\text {air }}=1.25 \mathrm{~kg} / \mathrm{m}^{3}$.
(in kg)
9. $\quad \mathbf{A} \bigcirc 3.622 \times 10^{5} \quad \mathbf{B} \bigcirc 4.527 \times 10^{5}$
$\mathbf{C} \bigcirc 5.659 \times 10^{5}$
D 7.074×10^{5}
$\mathbf{E} \bigcirc 8.842 \times 10^{5} \quad \mathbf{F} \bigcirc 1.105 \times 10^{6}$
$\mathbf{G} \bigcirc 1.382 \times 10^{6} \quad \mathbf{H} \bigcirc 1.727 \times 10^{6}$

3 pt Two sounds have intensities of 1.00×10^{-8} and $6.30 \times$ $10^{-4} \mathrm{~W} / \mathrm{m}^{2}$ respectively. What is the magnitude of the sound level difference between them in dB units?

| 10. $\mathbf{A} \bigcirc 20.40$ | $\mathbf{B} \bigcirc 23.05$ | $\mathbf{C} \bigcirc 26.05$ | $\mathbf{D} \bigcirc 29.44$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{E} \bigcirc 33.26$ | $\mathbf{F} \bigcirc 37.59$ | $\mathbf{G} \bigcirc 42.47$ | $\mathbf{H} \bigcirc 47.99$ |

$3 p t$ A stationary horn emits a sound with a frequency of 248 Hz . A car is moving toward the horn on a straight road with constant speed. If the driver of the car hears the horn at a frequency of 269 Hz , then what is the speed of the car? Use $340 \mathrm{~m} / \mathrm{s}$ for the speed of the sound.

$$
(i n \mathrm{~m} / \mathrm{s})
$$

11. $\mathbf{A} \bigcirc 2.88 \times 10^{1}$
D 6.77×10^{1}
B 3.83×10^{1}
$\mathbf{C} \bigcirc 5.09 \times 10^{1}$
G $\bigcirc 1.59 \times 10^{2}$
E $\bigcirc 9.01 \times 10^{1}$
$\mathbf{F} \bigcirc 1.20 \times 10^{2}$
$\mathbf{H} \bigcirc 2.12 \times 10^{2}$

Church organs have a set of pipes with different lengths. With those different pipes organs can produce sounds over a wide range of frequencies.
$3 p t$ If the lowest frequency produced by an organ is 28.2 Hz , and the highest frequency is 1.43 kHz , then what is the shortest possible wavelength of sound the organ can produce? Assume that the speed of sound is $333 \mathrm{~m} / \mathrm{s}$. (in cm)

| 12. $\mathbf{A} \bigcirc 5.27$ | $\mathbf{B} \bigcirc 7.64$ | $\mathbf{C} \bigcirc 11.1$ | $\mathbf{D} \bigcirc 16.1$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{E} \bigcirc 23.3$ | $\mathbf{F} \bigcirc 33.8$ | $\mathbf{G} \bigcirc 49.0$ | $\mathbf{H} \bigcirc 71.0$ |

$3 p t$ What is the longest possible sound wavelength the organ can produce?
(in m)

| 13. $\mathbf{A} \bigcirc 5.02$ | $\mathbf{B} \bigcirc 5.67$ | $\mathbf{C} \bigcirc 6.41$ | $\mathbf{D} \bigcirc 7.24$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{E} \bigcirc 8.18$ | $\mathbf{F} \bigcirc 9.25$ | $\mathbf{G} \bigcirc 10.5$ | $\mathbf{H} \bigcirc 11.8$ |

$3 p t$ A bimetallic strip is held fixed at the bottom end as shown in the figure.

The metal on the left has a coefficient of linear heat expansion of $\alpha_{\text {left }}=1.55 \times 10^{-5} 1 / \mathrm{K}$, the metal on the right has $\alpha_{\text {right }}=$ $3.50 \times 10^{-5} 1 / \mathrm{K}$. When the strip is heated, it will ... (complete the sentence)
14. $\mathrm{A} \bigcirc \ldots$ bend left.
$\mathbf{B} \bigcirc \ldots$ bend right.
$\mathbf{C} \bigcirc \ldots$ remain straight.
$3 p t$ What is the volume of 1.87 moles of Nitrogen gas, if the temperature of the gas is $10.7^{\circ} \mathrm{C}$ and the pressure is 2.67 atm?
(in L)
15. $\mathbf{A} \bigcirc 10.18$
B $\bigcirc 11.91$
$\mathbf{C} \bigcirc 13.94$
$\mathbf{D} \bigcirc 16.31$
$\mathbf{E} \bigcirc 19.08$
$\mathbf{F} \bigcirc$
22.32
$\mathbf{G} \bigcirc 26.12$
$\mathbf{H} \bigcirc 30.56$
$3 p t$ A gas bottle contains 5.21×10^{23} Ammonia molecules at a temperature of 342 K . What is the thermal energy of the gas? (You might need to know Boltzmann's constant: $\mathrm{k}_{\mathrm{B}}=$ $1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$.) (in J)

$$
\text { 16. } \begin{array}{llll}
\mathbf{A} \bigcirc 1.55 \times 10^{3} & \mathbf{B} \bigcirc 1.93 \times 10^{3} & \mathbf{C} \bigcirc 2.42 \times 10^{3} \\
\mathbf{D} \bigcirc 3.02 \times 10^{3} & \mathbf{E} \bigcirc 3.78 \times 10^{3} & \mathbf{F} \bigcirc 4.72 \times 10^{3} \\
\mathbf{G} \bigcirc 5.90 \times 10^{3} & \mathbf{H} \bigcirc 7.38 \times 10^{3} &
\end{array}
$$

$3 p t$
(in J$)$

17. $\mathbf{A} \bigcirc 1.42 \times 10^{-20} \quad \mathbf{B} \bigcirc 1.77 \times 10^{-20}$
$3 p t$ On average how much energy is stored by ONE degree of freedom for ONE single molecule?
(in J)
18. $\mathbf{A} \bigcirc 1.33 \times 10^{-21} \quad \mathbf{B} \bigcirc 1.78 \times 10^{-21}$
[^0]
[^0]: Printed from LON-CAPA®MSU Licensed under GNU General Public License

