B. The Binomial Theorem

A general expression that we often encounter in algebra and calculus is $(A + B)^p$. A and B denote real numbers; the exponent p might be an integer, although not necessarily. The binomial theorem tells how to expand this expression in powers of A and B.

The simplest example is p = 2, which is familiar from school,

$$(A+B)^2 = A^2 + 2AB + B^2.$$
 (B-1) eq:AB2

For example, what is the square of 5 + 7? We could first add, 5 + 7 = 12, and then square, $12^2 = 144$. Or, we could use (B-1), 25 + 70 + 49 = 144. For a case where the values of A and B are known, there is no particular advantage in the expansion. But if A or B (or both) are symbolic variables, expanding in powers in powers may lead to simplification.

Example 2. Simplify $(A + B)^2 - (A - B)^2$.

Solution. Using $(\begin{array}{c} eq: AB2\\ (B-1) \end{array}$, the quantity is

$$(A^2 + 2AB + B^2) - (A^2 - 2AB + B^2) = 4AB.$$
 (B-2)

We will also need higher powers, such as $(A + B)^3$ or $(A + B)^4$. The proof of (B-1) and its genrealizations is based on the associative property of multiplication,

$$(A+B)C = AC + BC. (B-3) \quad eq:assoc$$

For example, $(3 + 4) \times 5 = 35$ is equal to 15 + 20. Letting C = (A + B) in (B-3) leads to (B-1):

$$(A+B)(A+B) = A(A+B) + B(A+B) = A^2 + AB + BA + B^2 = A^2 + 2AB + B^2.$$
(B-4)

Then letting $C = A^2 + 2AB + B^2$ leads to the equation for $(A + B)^3$,

$$(A+B)^3 = (A+B)(A^2 + 2AB + B^2) = A(A^2 + 2AB + B^2) + B(A^2 + 2AB + B^2) = A^3 + 3A^2B + 3AB^2 + B^3.$$
 (B-5) eq:AB3

The expansion for $(A + B)^4$ is derived similarly,

$$(A+B)^4 = A^4 + 4A^3B + 6A^2B^2 + 4AB^3 + B^4.$$
 (B-6) eq:AB4

a b c d

Table B-1: Properties of factorials

A general theorem for $(A + B)^n$, with *n* an integer, is given in the next section. The result is extended to $(A + B)^p$ for noninteger *p* in the final section.

B.1 INTEGER POWERS

Theorem B-1. The expansion of $(A + B)^n$ in powers of A and B, where n is a positive integer, is

$$(A+B)^{n} = \sum_{k=0}^{n} \frac{n!}{k!(n-k)!} A^{n-k} B^{k}.$$
 (B-7) eq:BT

The sum in (B-7) has n + 1 terms. Each term is the product of a numerical constant, a power of A, and a power of B. The exponents of A and B add to n. The A and B powers are

$$A^n, A^{n-1}B, A^{n-2}B^2, \dots, AB^{n-1}, B^n,$$

i.e., all combinations such that the sum of exponents is n. For n = 2 these are the three terms in (B-1); for n = 3 these are the four terms in (B-5), and so on.

The coefficient of $A^{n-k}B^k$ is called the *binomial coefficient*, denoted by $\binom{n}{k}$, and defined by

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}.$$
(B-8) eq:BC

Here n! (read as "*n* factorial") is, for $n \ge 1$, the product of all the integers from 1 to *n*. Table B-1 lists some properties of factorials. The value of 0! is defined to be 1. Also, note the recursion relation (n + 1)! = (n + 1)n!.

defined to be 1. Also, note the recursion relation (n + 1)! = (n + 1)n!. The highest power of A in (B-7) is A^n (the term with k = 0); the coefficient is

$$\binom{n}{0} = \frac{n!}{0!n!} = 1.$$

The highest power of B is B^n , which also has coefficient 1. Note how these

tbl1

results agree with (B-1), (B-5) and (B-6).

Proof of Theorem B-1. Equation $(\stackrel{[eq:BT]}{\mathbb{B}-7})$ is proven by induction. It is obviously true for n = 1,

$$(A+B)^{1} = \frac{1!}{0!1!}A^{1}B^{0} + \frac{1!}{1!0!}A^{0}B^{1} = A+B.$$
 (B-9)

Now assume that it is true for n, and consider the next power, n + 1:

$$(A+B)^{n+1} = (A+B)(A+B)^n$$

= $\sum_{k=0}^n \binom{n}{k} (A^{n-k+1}B^k + A^{n-k}B^{k+1}).$ (B-10) [eq:ind1]

The exponents sum to n + 1 in both terms in the sum. Now rearrange the terms in the sum to the form in $(\overrightarrow{B-7})$,

$$\sum_{\ell=0}^{n+1} C_{\ell} A^{n+1-\ell} B^{\ell}.$$
(B-11)

We use here a different summation variable ℓ so that it will not be confused with k in (B-10). The coefficient of the term $A^{n+1-\ell}B^{\ell}$ is

$$C_{\ell} = \binom{n}{\ell} + \binom{n}{\ell-1}; \qquad (B-12) \quad \text{eq:Cell}$$

the two terms come from the two terms in (B-10). (The first term is the coefficient of $A^{n-k+1}B^k$ with $k = \ell$; the second term is the coefficient of $A^{n-k}B^{k+1}$ with $k = \ell - 1$.) C_{ℓ} can be simplified using properties of the factorial,

$$C_{\ell} = \frac{n!}{\ell!(n-\ell)!} + \frac{n!}{(\ell-1)!(n-\ell+1)!}$$

$$= \frac{n!}{(\ell-1)!(n-\ell)!} \left[\frac{1}{\ell} + \frac{1}{n-\ell+1} \right]$$

$$= \frac{n!}{(\ell-1)!(n-\ell)!} \frac{n+1}{\ell(n+1-\ell)}$$

$$= \frac{(n+1)!}{\ell!(n+1-\ell)!} = \binom{n+1}{\ell};$$
(B-13) eq:proof

i.e., C_{ℓ} is the binomial coefficient for n + 1 factors. Hence $(\overrightarrow{B-7})$ is true for $(A+B)^{n+1}$. By induction, the theorem is proven.

n					bir	iomia	al coe	fficier	nts					
0							1							
1						1		1						
2					1		2		1					
3				1		3		3		1				
4			1		4		6		4		1			
5		1		5		10		10		5		1		
6	1		6		15		20		15		6		1	
etc.														

Table B-2: Pascal's triangle

tbl2

Pascal's triangle

The coefficients of $A^{n-k}B^k$ in the expansion (B-7) may be arranged in Pascal's triangle, shown in Table B-2. For example, the numbers in the rows with n = 2, 3, and 4, agree with the coefficients in Eqs. B-1), B-5), and B-6). In Pascal's triangle, each number (for n > 0) is the sum of the two adjacent numbers in the line above. In terms of binomial coefficients, this constuction is

$$\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1}$$

which is just the identity in the proof of Theorem B-1 [see (B-12) and (B-13)].

B.2 THE BINOMIAL EXPANSION FOR NONINTEGER POWERS

Theorem B-1 is an exact and finite equation for any A and B and integer n. There is a related expression if n is not an integer, discovered by Isaac Newton.

Let p be a real number, positive or negative. Then consider $(A+B)^p \equiv N$. The binomial expansion, generalized to noninteger p, is

$$(A+B)^p = A^p + \frac{p}{1!}A^{p-1}B + \frac{p(p-1)}{2!}A^{p-2}B^2$$

+ $\frac{p(p-1)(p-2)}{3!}A^{p-3}B^3 + \dots + C(p,k)A^{p-k}B^k + B^{-1}A$ [eq:BE]

the general coefficient (for k > 0) is

$$C(p,k) = \frac{p(p-1)(p-2)\cdots(p-k+1)}{k!}.$$
(B-15)

In general the number of terms that must be summed in (B-14) is infinite, i.e., the expansion is an infinite series,

$$(A+B)^{p} = \sum_{k=0}^{\infty} C(p,k) A^{p-k} B^{k}.$$
 (B-16) eq:BE2

If p = n, an integer, then the coefficient of the term proportional to $A^{n-k}B^k$ is

$$C(n,k) = \frac{n(n-1)(n-2)\cdots(n-k+1)}{k!} = \binom{n}{k}, \qquad (B-17) \quad \text{eq:casepn}$$

just the binomial coefficient for power n. In this case the number of terms in the expansion is finite, and equal to n + 1. The coefficient C(n, k) is 0 if k > n, because one of the factors in the numerator of (B-17) is 0. For example, C(n, n+1) = 0 because the final factor is n - (n+1) + 1 = 0. Thus the binomial expansion (B-16) reduces to Theorem B-1 if p is an integer.

If p is not an integer then $(\overline{B-16})$ is an infinite series. In order for the series to be convergent, A should be the larger (in magnitude) of A and B. (Otherwise, reverse the roles of A and B in the right-hand side of $(\overline{B-16})$.) Then the kth terms is proportional to

$$A^{p-k}B^k = A^p \left(\frac{B}{A}\right)^k$$

where |B/A| is less than 1. As k increases, the factor $(B/A)^k$ gets smaller and smaller (in magnitude) so that the sum can converge to a finite value as more and more terms are added.¹

An interesting special case is A = 1 and B = x. Then the binomial expansion becomes

$$(1+x)^{p} = 1 + \frac{p}{1!}x + \frac{p(p-1)}{2!}x^{2} + \dots + \frac{p(p-1)(p-2)\cdots(p-k+1)}{k!}x^{k} + \dots$$
(B-18)

This series is the Taylor series (Chapter 7) of the function $(1+x)^p$.

Example 4. Estimate $\sqrt{5}$ from the binomial expansion.

Solution. Write $\sqrt{5} = (4+1)^{1/2}$, and apply (B-16) with A = 4, B = 1 and p = 1/2; that is,

$$\sqrt{5} = A^{1/2} \sum_{k=0}^{\infty} C\left(\frac{1}{2}, k\right) \left(\frac{B}{A}\right)^k$$

¹Convergence of infinite series is discussed in Appendix C.

$$= 2\left[1 + \frac{1}{1!2}\left(\frac{1}{4}\right) - \frac{1}{2!4}\left(\frac{1}{4}\right)^2 + \frac{1}{3!8}\left(\frac{1}{4}\right)^3 + \cdots\right]$$

$$\approx 2.236.$$
(B-19)

The first four terms in the series give an approximation to $\sqrt{5}$ that is accurate to 3 decimal places.

Example 6. Calculate $\sqrt[3]{3}$ accurate to 3 decimal places.

Solution Write $\sqrt[3]{3} = (8 - 5)^{1/3} = 2(1 - 5/8)^{1/3}$		sum of
The coefficient $C(1/2, k)$ may be calculated from the	n	n terms
The coefficient $C(1/5, \kappa)$ may be calculated from the	1	2
	2	1.583
$C(1/3, k+1) = \frac{1/3 - k}{C(1/3, k)}$	3	1.497
k+1	4	1.466
The first few coefficients are	5	1.454
1 1 5	6	1.448
$1, \frac{1}{3}, -\frac{1}{9}, \frac{1}{81}, \dots$	7	1.445
The table shows how the expansion $(\frac{\text{eq:BE}}{\text{B} \cdot \text{IA}})$ converges	8	1.444
as terms are added one by one. To achieve an accuracy	9	1.443
of 2 decimal places 12 terms in the sum are passes	10	1.443
which gives $\frac{3}{2} = 1.442$	12	1.442
which gives $\sqrt{3} = 1.442$.		

Example 8. Write the binomial expansion for A = 1, B = x, and p = -1. What is the series? Is it convergent?

Solution. The expression for this case is

$$\frac{1}{1-x} = \sum_{k=0}^{\infty} C(-1,k)(-x)^k$$
$$= \sum_{k=0}^{\infty} \frac{(-1)(-2)(-3)\cdots(-k)}{k!} (-x)^k$$
$$= \sum_{k=0}^{\infty} x^k = 1 + x + x^2 + x^3 + \cdots .$$
(B-20)

This is the geometric series. The series converges for x in the range -1 < x < 1.