B. The Binomial Theorem

A general expression that we often encounter in algebra and calculus is $(A+$ $B)^{p}$. A and B denote real numbers; the exponent p might be an integer, although not necessarily. The binomial theorem tells how to expand this expression in powers of A and B.

The simplest example is $p=2$, which is familiar from school,

$$
\begin{equation*}
(A+B)^{2}=A^{2}+2 A B+B^{2} \tag{B-1}
\end{equation*}
$$

For example, what is the square of $5+7$? We could first add, $5+7=12$, and then square, $12^{2}=144$. Or, we could use $\left(\frac{\mathrm{eq}: \mathrm{AB} 2}{\mathrm{~B}-1)} 25+70+49=144\right.$. For a case where the values of A and B are known, there is no particular advantage in the expansion. But if A or B (or both) are symbolic variables, expanding in powers in powers may lead to simplification.

Example 2. Simplify $(A+B)^{2}-(A-B)^{2}$.
Solution. Using (eq:AB2 $($ Be 1$)$, the quantity is

$$
\begin{equation*}
\left(A^{2}+2 A B+B^{2}\right)-\left(A^{2}-2 A B+B^{2}\right)=4 A B \tag{B-2}
\end{equation*}
$$

We will also need higher powers, such as $(A+B)^{3}$ or $(A+B)^{4}$. The
 multiplication,

$$
\begin{equation*}
(A+B) C=A C+B C \tag{B-3}
\end{equation*}
$$

For example, $(3+4) \times 5=35$ is equal to $15+20$. Letting $C=(A+B)$ in $\left(\frac{\text { eq:assoc }}{(\mathrm{B}-3) \text { leads }}\right.$ to $\left(\frac{\mathrm{eq}: \mathrm{AB} 2}{(\mathrm{~B}-1)}\right.$:

$$
\begin{align*}
(A+B)(A+B) & =A(A+B)+B(A+B) \\
& =A^{2}+A B+B A+B^{2} \\
& =A^{2}+2 A B+B^{2} . \tag{B-4}
\end{align*}
$$

Then letting $C=A^{2}+2 A B+B^{2}$ leads to the equation for $(A+B)^{3}$,

$$
\begin{align*}
(A+B)^{3} & =(A+B)\left(A^{2}+2 A B+B^{2}\right) \\
& =A\left(A^{2}+2 A B+B^{2}\right)+B\left(A^{2}+2 A B+B^{2}\right) \\
& =A^{3}+3 A^{2} B+3 A B^{2}+B^{3} \tag{B-5}
\end{align*}
$$

The expansion for $(A+B)^{4}$ is derived similarly,

$$
\begin{equation*}
(A+B)^{4}=A^{4}+4 A^{3} B+6 A^{2} B^{2}+4 A B^{3}+B^{4} \tag{B-6}
\end{equation*}
$$

a b
c d

Table B-1: Properties of factorials

A general theorem for $(A+B)^{n}$, with n an integer, is given in the next section. The result is extended to $(A+B)^{p}$ for noninteger p in the final section.

B. 1 INTEGER POWERS

Theorem B-1. The expansion of $(A+B)^{n}$ in powers of A and B, where n is a positive integer, is

$$
\begin{equation*}
(A+B)^{n}=\sum_{k=0}^{n} \frac{n!}{k!(n-k)!} A^{n-k} B^{k} \tag{B-7}
\end{equation*}
$$

The sum in $\left(\frac{\mathrm{eq}: \mathrm{BT}}{\mathrm{B}-7)}\right.$ has $n+1$ terms. Each term is the product of a numerical constant, a power of A, and a power of B. The exponents of A and B add to n. The A and B powers are

$$
A^{n}, \quad A^{n-1} B, \quad A^{n-2} B^{2}, \quad \ldots, \quad A B^{n-1}, \quad B^{n}
$$

i.e., all combinations such that the sum of exponents is n. For $n=2$ these
 so on.

The coefficient of $A^{n-k} B^{k}$ is called the binomial coefficient, denoted by $\binom{n}{k}$, and defined by

$$
\begin{equation*}
\binom{n}{k}=\frac{n!}{k!(n-k)!} \tag{B-8}
\end{equation*}
$$

Here $n!$ (read as " n factorial") is, for $n \geq 1$, the product of all the integers from 1 to n. Table $\mathbb{B}-1$ lists some properties of factorials. The value of 0 ! is defined to be 1. Also, note the recursion relation $(n+1)!=(n+1) n!$.

The highest power of A in $\left(\frac{\mathrm{eq}: \mathrm{B}: \bar{B})}{\mathrm{B}-7)}\right.$ is A^{n} (the term with $k=0$); the coefficient is

$$
\binom{n}{0}=\frac{n!}{0!n!}=1 .
$$

The highest power of B is B^{n}, which also has coefficient 1 . Note how these

Proof of Theorem B-1. Equation $\left(\frac{\mathrm{eq}: \mathrm{BT}}{\mathrm{B}-7)}\right.$ is proven by induction. It is obviously true for $n=1$,

$$
\begin{equation*}
(A+B)^{1}=\frac{1!}{0!1!} A^{1} B^{0}+\frac{1!}{1!0!} A^{0} B^{1}=A+B \tag{B-9}
\end{equation*}
$$

Now assume that it is true for n, and consider the next power, $n+1$:

$$
\begin{align*}
(A+B)^{n+1} & =(A+B)(A+B)^{n} \\
& =\sum_{k=0}^{n}\binom{n}{k}\left(A^{n-k+1} B^{k}+A^{n-k} B^{k+1}\right) \tag{B-10}
\end{align*}
$$

The exponents sum to $n+1$ in both terms in the sum. Now rearrange the terms in the sum to the form in $\left(\frac{\mathrm{eq}: \mathrm{BI}}{\mathrm{B}-7}\right)$,

$$
\begin{equation*}
\sum_{\ell=0}^{n+1} C_{\ell} A^{n+1-\ell} B^{\ell} \tag{B-11}
\end{equation*}
$$

We use here a different summation variable ℓ so that it will not be confused with k in ($\frac{(\mathrm{B} \text { - }: 10 \mathrm{ind1}}{}$. The coefficient of the term $A^{n+1-\ell} B^{\ell}$ is

$$
\begin{equation*}
C_{\ell}=\binom{n}{\ell}+\binom{n}{\ell-1} ; \tag{B-12}
\end{equation*}
$$

the two terms come from the two terms in (b-ib:ind1. (The first term is the coefficient of $A^{n-k+1} B^{k}$ with $k=\ell$; the second term is the coefficient of $A^{n-k} B^{k+1}$ with $k=\ell-1$.) C_{ℓ} can be simplified using properties of the factorial,

$$
\begin{align*}
C_{\ell} & =\frac{n!}{\ell!(n-\ell)!}+\frac{n!}{(\ell-1)!(n-\ell+1)!} \\
& =\frac{n!}{(\ell-1)!(n-\ell)!}\left[\frac{1}{\ell}+\frac{1}{n-\ell+1}\right] \\
& =\frac{n!}{(\ell-1)!(n-\ell)!} \frac{n+1}{\ell(n+1-\ell)} \\
& =\frac{(n+1)!}{\ell!(n+1-\ell)!}=\binom{n+1}{\ell} \tag{B-13}
\end{align*}
$$

i.e., C_{ℓ} is the binomial coefficient for $n+1$ factors. Hence $\left(\frac{\mathrm{LQq}: \mathrm{BT}}{\mathrm{B}-7}\right)$ is true for $(A+B)^{n+1}$. By induction, the theorem is proven.

Table B-2: Pascal's triangle

Pascal's triangle

The coefficients of $A^{n-k} B^{k}$ in the expansion ($\left(\frac{\mathrm{Eq}}{\mathrm{B}}: \mathrm{BT}\right)$ may be arranged in Pas-
 with $n=2,3$, and 4 , agree with the coefficients in Eqs. $\mathbb{B}-1)$, $\mathbb{B}-5$), and $\frac{1}{\mathbb{B}-6) .}$ In Pascal's triangle, each number (for $n>0$) is the sum of the two adjacent numbers in the line above. In terms of binomial coefficients, this constuction is

$$
\binom{n+1}{k}=\binom{n}{k}+\binom{n}{k-1}
$$

which is just the identity in the proof of Theorem B-1 [see (要:Cell

B. 2 THE BINOMIAL EXPANSION FOR NONINTEGER POWERS

Theorem B-1 is an exact and finite equation for any A and B and integer n. There is a related expression if n is not an integer, discovered by Isaac Newton.

Let p be a real number, positive or negative. Then consider $(A+B)^{p} \equiv N$. The binomial expansion, generalized to noninteger p, is

$$
\begin{aligned}
(A+B)^{p} & =A^{p}+\frac{p}{1!} A^{p-1} B+\frac{p(p-1)}{2!} A^{p-2} B^{2} \\
& +\frac{p(p-1)(p-2)}{3!} A^{p-3} B^{3}+\cdots+C(p, k) A^{p-k} B^{k}+(\mathrm{B}-14)
\end{aligned}
$$

the general coefficient (for $k>0$) is

$$
\begin{equation*}
C(p, k)=\frac{p(p-1)(p-2) \cdots(p-k+1)}{k!} . \tag{B-15}
\end{equation*}
$$

In general the number of terms that must be summed in ($\left(\frac{\mathrm{eq}: \mathrm{BE}}{\mathrm{B}-14}\right)$ is infinite, i.e., the expansion is an infinite series,

$$
\begin{equation*}
(A+B)^{p}=\sum_{k=0}^{\infty} C(p, k) A^{p-k} B^{k} \tag{B-16}
\end{equation*}
$$

If $p=n$, an integer, then the coefficient of the term proportional to $A^{n-k} B^{k}$ is

$$
\begin{equation*}
C(n, k)=\frac{n(n-1)(n-2) \cdots(n-k+1)}{k!}=\binom{n}{k}, \tag{B-17}
\end{equation*}
$$

just the binomial coefficient for power n. In this case the number of terms in the expansion is finite, and equal to $n+1$. The coefficient $C(n, k)$ is 0
 example, $C(n, n+1)=0$ because the final factor is $n-(n+1)+1=0$. Thus

If p is not an integer then $\left(\frac{\mathrm{B}}{\mathrm{B}} \mathrm{B}: \mathrm{BC} 2\right)$ is an infinite series. In order for the series to be convergent, A should be the larger (in magnitude) of A and B. (Otherwise, reverse the roles of A and B in the right-hand side of ((B-16).) Then the k th terms is proportional to

$$
A^{p-k} B^{k}=A^{p}\left(\frac{B}{A}\right)^{k}
$$

where $|B / A|$ is less than 1 . As k increases, the factor $(B / A)^{k}$ gets smaller and smaller (in magnitude) so that the sum can converge to a finite value as more and more terms are added. ${ }^{1}$

An interesting special case is $A=1$ and $B=x$. Then the binomial expansion becomes

$$
\begin{align*}
(1+x)^{p}= & 1+\frac{p}{1!} x+\frac{p(p-1)}{2!} x^{2} \\
& +\cdots+\frac{p(p-1)(p-2) \cdots(p-k+1)}{k!} x^{k}+\cdots . \tag{B-18}
\end{align*}
$$

This series is the Taylor series (Chapter 7) of the function $(1+x)^{p}$.
Example 4. Estimate $\sqrt{5}$ from the binomial expansion.
Solution. Write $\sqrt{5}=(4+1)^{1 / 2}$, and apply ($\left(\frac{\mathrm{Bq}: \text { :BE } 2}{}\right.$ - 16 with $A=4, B=1$ and $p=1 / 2$; that is,

$$
\sqrt{5}=A^{1 / 2} \sum_{k=0}^{\infty} C\left(\frac{1}{2}, k\right)\left(\frac{B}{A}\right)^{k}
$$

[^0]\[

$$
\begin{align*}
& =2\left[1+\frac{1}{1!} \frac{1}{2}\left(\frac{1}{4}\right)-\frac{1}{2!} \frac{1}{4}\left(\frac{1}{4}\right)^{2}+\frac{1}{3!} \frac{3}{8}\left(\frac{1}{4}\right)^{3}+\cdots\right] \\
& \approx 2.236 . \tag{B-19}
\end{align*}
$$
\]

The first four terms in the series give an approximation to $\sqrt{5}$ that is accurate to 3 decimal places.

Example 6. Calculate $\sqrt[3]{3}$ accurate to 3 decimal places.
Solution. Write $\sqrt[3]{3}=(8-5)^{1 / 3}=2(1-5 / 8)^{1 / 3}$. The coefficient $C(1 / 3, k)$ may be calculated from the recursion relation

$$
C(1 / 3, k+1)=\frac{1 / 3-k}{k+1} C(1 / 3, k)
$$

The first few coefficients are

$$
1, \frac{1}{3}, \quad-\frac{1}{9}, \frac{5}{81}, \quad \ldots
$$

The table shows how the expansion ($\left(\frac{\mathrm{Bq}: \mathrm{BE}}{\mathrm{B}-14}\right)$ converges as terms are added one by one. To achieve an accuracy of 3 decimal places, 12 terms in the sum are necessary, which gives $\sqrt[3]{3}=1.442$.

	sum of
n	n terms
1	2
2	1.583
3	1.497
4	1.466
5	1.454
6	1.448
7	1.445
8	1.444
9	1.443
10	1.443
12	1.442

Example 8. Write the binomial expansion for $A=1, B=x$, and $p=-1$. What is the series? Is it convergent?

Solution. The expression for this case is

$$
\begin{align*}
\frac{1}{1-x} & =\sum_{k=0}^{\infty} C(-1, k)(-x)^{k} \\
& =\sum_{k=0}^{\infty} \frac{(-1)(-2)(-3) \cdots(-k)}{k!}(-x)^{k} \\
& =\sum_{k=0}^{\infty} x^{k}=1+x+x^{2}+x^{3}+\cdots \tag{B-20}
\end{align*}
$$

This is the geometric series. The series converges for x in the range $-1<$ $x<1$.

[^0]: ${ }^{1}$ Convergence of infinite series is discussed in Appendix C.

