B. The Binomial Theorem

A general expression that we often encounter in algebra and calculus is (A +
B)?. A and B denote real numbers; the exponent p might be an integer,
although not necessarily. The binomial theorem tells how to expand this
expression in powers of A and B.

The simplest example is p = 2, which is familiar from school,

(A+ B)* = A* + 2AB + B2 (B-1)

For example, what is the square of 5 + 77 We could first add, 5 + 7 = 12,
and then square, 122 = 144. Or, we could use (%515)137225 + 70 + 49 = 144.
For a case where the values of A and B are known, there is no particular
advantage in the expansion. But if A or B (or both) are symbolic variables,
expanding in powers in powers may lead to simplification.

Ezample 2. Simplify (A + B)? — (A — B)%
:AB2
Solution. Using (eB(— Bi, the quantity is
(A +2AB + B®) — (A* —2AB + B*) = 4AB. (B-2)

We will also need higher powers, such as (A+ B)? or (A+ B)*. The
proof of (B(— ) and its genrealizations is based on the associative property of
multiplication,

(A+ B)C = AC + BC. (B-3)

For example, (364-: 4B)2>< 5 = 35 is equal to 15 4 20. Letting C = (A + B) in
(B-3) Teads to (B-IJ:

(A+B)(A+B) = A(A+B)+ B(A+ B)
= A+ AB+ BA+ B?
= A?4+2AB+ B% (B-4)

Then letting C' = A2 4+ 2AB + B? leads to the equation for (A + B)3,

(A+B)> = (A+B)(A?+2AB+ B?)
= A(A®+2AB + B?) + B(A? + 2AB + B?)
= A®4+3A°B+3AB% + B> (B-5)

The expansion for (A + B)? is derived similarly,
(A+ B)* = A* + 4A°B + 6A’B? + 4AB® + B*. (B-6)
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Table B-1: Properties of factorials

A general theorem for (A + B)™, with n an integer, is given in the next
section. The result is extended to (A + B)P for noninteger p in the final
section.

B.1 INTEGER POWERS

Theorem B-1. The expansion of (A + B)™ in powers of A and
B, where n is a positive integer, is

(A+B)" Zk, A" KBk (B-7)

:BT
The sum in (613(—7] has n + 1 terms. Each term is the product of a numerical
constant, a power of A, and a power of B. The exponents of A and B add
to n. The A and B powers are

An Anle An72BQ AB"71 Bn
i.e., all combinations such that the sum of exponents is n. For n = 2 these
are the three terms in ( for n = 3 these are the four terms in ( , and
SO on.

The coefficient of A"*B* is called the binomial coefficient, denoted by
n
( k)’ and defined by

(Z) - k!(nni k)l (B-8)

Here n! (read as “n factomal”) is, for n > 1, the product of all the integers
from 1 to n. Table |B_Thsts some properties of factorials. The value of 0! is
defined to be 1. Also, note the recursion relation (n+1)!=(n+1)nl

The highest power of A in (B-7)is A™ (the term with k& = 0); the coeffi-
cient is

(6) = -

The highest power of B is B™, which also has coefficient 1. Note how these
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:AB2 :AB3 :AB4
results agree with (e -1), (eB(-Si and (eB(-Gi.

:BT
Proof of Theorem B-1. Equation (613(—7] is proven by induction. It is
obviously true for n =1,

1! 1!
1_ 1 RO 0pl _ ;
_O!llAB +1!0!AB =A+B. (B-9)

Now assume that it is true for n, and consider the next power, n + 1:

(A+ B)

(A+B)"™' = (A+B)(A+B)"

z”: (Z) (An—K+IBE 4 An—hpRe1y (B-10)

k=0

The exponents sum to n + 1 in bgth Tterms in the sum. Now rearrange the
terms in the sum to the form in (B-7),
n+1
> c At tBe (B-11)
£=0
We use herg aidiﬁerent summation variable ¢ so that it will not be confused
with & in (B 0). The coefficient of the term A"+1—¢B¢ is

=()+(,%) w2

the two terms come from the two terms in (ifeBg-'l}(ﬁ&)(E (The first term is the
coefficient of A" *+1B* with k = /; the second term is the coefficient of
A=k B1 with k = ¢ — 1.) C, can be simplified using properties of the
factorial,

n! n!
M =0 " T—Din—t+ D)

C, =

n! 1 1
= U= Dm—0) [Z—i_n—ﬁ—&-l}
n! n+1
C—Din—0! {n+1—20)

B (n+D!  /n+1Y)
= im0 (B-13)

. . . . . eq:BT .
i.e., Cy is the binomial coefficient for n + 1 factors. Hence (B(—(] is true for
(A + B)"*1. By induction, the theorem is proven.
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n binomial coefficients

0 1

1 1 1

2 1 2 1

3 1 3 3 1

4 1 4 6 4 1

5 1 5 10 10 5 1

6 1 6 15 20 15 6 1
etc.

Table B-2: Pascal’s triangle

Pascal’s triangle

The coefficients of A»~*B* in the expansion (%q%may be arranged in Pas-
cal’s triangle, shown in Table |ftl;3b7122'. For example, the numéoers in the rows,
with n = 2, 3, and 4, agree with the coefficients in Eqs. B-1J, B-5), and B

In Pascal’s triangle, each number (for n > 0) is the sum of the two adjacent

numbers in the line above. In terms of binomial coefficients, this constuction

1S
n+1 n n
( k )_(k)+<k—1)’
q:proof

C . o %mCell % :
which is just the identity in the proof of Theorem B-1 [see (B-12) and (IB-13)].

B.2 THE BINOMIAL EXPANSION FOR NONINTEGER POWERS

Theorem B-1 is an exact and finite equation for any A and B and integer
n. There is a related expression if n is not an integer, discovered by Isaac
Newton.

Let p be a real number, positive or negative. Then consider (A+B)? = N.
The binomial expansion, generalized to noninteger p, is

—1
(A+B)p — Ap+ %Aple+p(p2| )Ap72BQ
¢ P00 iy O k) 4B Bg)

the general coefficient (for k& > 0) is

pp—-Dp-2)---p-k+1)
k!

Clp, k) = . (B-15)
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In general the number of terms that must be summed in (B- E) is infinite,
i.e., the expansion is an infinite series,

(A+B) = i C(p, k) AP~k BF, (B-16)
k=0

If p = n, an integer, then the coefficient of the term proportional to
A"k BF is

C(n, k) =

USSR LRI R Y (B-17)

k! k
just the binomial coefficient for power n. In this case the number of terms
in the expansion is finite, and equal to n + 1. The coefﬁcign‘:ccCs gnﬁk) is 0
if k& > n, because one of the factors in the numerator of ([B- 1s 0. For
example, C(n,n+1) =0 becanse the final factoris n— (n+1)+1=0. Thus
the binomial expansion (B- rgd:uBces to Theorem B-1 if p is an integer.

If p is not an integer then (B- is an infinite series. In order for the
series to be convergent, A should be the larger (in magnitude) of A and B.
(Otherwise, reverse the roles of A and B in the right-hand side of (ifqu-'lgbg%)
Then the kth terms is proportional to

B\*
p—kpk _ Ap [ Z
st (2)

where |B/A| is less than 1. As k increases, the factor (B/A)* gets smaller
and smaller (in magnitude) so that the sum can converge to a finite value as
more and more terms are added.’

An interesting special case is A = 1 and B = z. Then the binomial
expansion becomes

-1
(1+$)p = 1+%I+%I2
pp—Dp—-2)---(p—k+1) ,

R o ¥4 . (B-18)

This series is the Taylor series (Chapter 7) of the function (1 + x)P.

Example 4. Estimate /5 from the binomial expansion.

:BE2
Solution. Write v/5 = (4 +1)'/2, and apply (eB(-léi with A =4, B=1 and
p = 1/2; that is,

7 = (i) )

LConvergence of infinite series is discussed in Appendix C.

eq:casepn
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L ALY 111N 131\
112 \ 4 214 \ 4 318 \ 4

(B-19)

The first four terms in the series give an approximation to v/5 that is accurate

to 3 decimal places.

Exzample 6. Calculate /3 accurate to 3 decimal places.

Solution. Write /3 = (8 — 5)/% = 2(1 — 5/8)1/3,

The coefficient C(1/3, k) may be calculated from the 7;
recursion relation 9
1/3—k
C(1/3,k+1) = C(1/3,k). 3
(1/3,k+1) = L2223, ’
The first few coefficients are 5
1 1 5 6
17 o) —a’ o1’ 7
3 9" 81
:B

The table shows how the expansion (e - converges 8
i 9

as terms are added one by one. To achieve an accuracy
. . 10
of 3 decimal places, 12 terms in the sum are necessary, 19

which gives v/3 = 1.442.

sum of
n terms

2
1.583
1.497
1.466
1.454
1.448
1.445
1.444
1.443
1.443
1.442

Exzample 8. Write the binomial expansion for A =1, B =z, and p = —1.

What is the series? Is it convergent?

Solution. The expression for this case is

1

1—=x

= ) C(-1,k)(-x)
k=0

k=0

o0
= Zxk:1+z+x2+x3+~-~ .
k=0

(B-20)

This is the geometric series. The series converges for x in the range —1 <

xr <1.



